991 resultados para BLOOD STAGES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC(50)] of 20.3 +/- 1.0 mu M). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The mechanisms by which humans regulate pro-and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. Methodology/Principal Findings: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF)-alpha receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85), P. falciparum (n = 30), or both species (n = 12), and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL)-10, which correlated positively with parasite density, and elevated IL-10/TNF-alpha, IL-10/interferon (IFN)-gamma, IL-10/IL-6 and sTNFRII/TNF-alpha ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-alpha receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. Conclusions: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction of regulatory cytokines may be a critical mechanism protecting vivax malaria patients from severe clinical complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we determined whether the treatment of asymptomatic parasites carriers (APCs), which are frequently found in the riverside localities of the Brazilian Amazon that are highly endemic for malaria, would decrease the local malaria incidence by decreasing the overall pool of parasites available to infect mosquitoes. In one village, the treatment of the 19 Plasmodium falciparum-infected APCs identified among the 270 residents led to a clear reduction (Z = -2.39, p = 0.017) in the incidence of clinical cases, suggesting that treatment of APCs is useful for controlling falciparum malaria. For vivax malaria, 120 APCs were identified among the 716 residents living in five villages. Comparing the monthly incidence of vivax malaria in two villages where the APCs were treated with the incidence in two villages where APCs were not treated yielded contradictory results and no clear differences in the incidence were observed (Z = -0.09, p = 0.933). Interestingly, a follow-up study showed that the frequency of clinical relapse in both the treated and untreated APCs was similar to the frequency seen in patients treated for primary clinical infections, thus indicating that vivax clinical immunity in the population is not species specific but only strain specific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. Methods The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-119) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. Results The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-119 and PSS1 antigen. A low proliferative response against PvMSP-119 and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-119 stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient’s cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-119 was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. Conclusions The results presented here shows that PvMSP-119 was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-119 in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protective immunity against Plasmodium falciparum may be obtained after repeated exposure to infection. Several studies indicate that immunity against the blood stages of the P. Falciparum infection is mainly antibody mediated. Protective antibodies may act either on their own, mediate antibody-dependent phagocytosis and/or cell-mediated neutralization of parasites. This thesis describes several aspects of humoral immune responses to P. falciparum infection in individuals of different age groups, different genetic background and with different degrees of malaria exposure. Several target antigens for antibody-mediated inhibition of parasite growth or invasion have been identified. One such antigen is Pf332, which appears on the surface of parasitized erythrocytes at late trophozoite and schizont stage. This surface exposure makes the antigen a possible target for opsonizing antibodies. We optimized an in vitro assay for studying cellmediated parasite neutralization in the presence of Pf332-reactive antibodies. Our data demonstrate that, Pf332 specific antibodies are able to inhibit parasite growth on their own and in cooperation with human monocytes. The P. falciparum parasites have evolved several mechanisms to evade the host neutralizing immune responses. In this thesis, we show that freshly isolated P. falciparum parasites from children living in a malaria endemic area of Burkina Faso were less sensitive for growth inhibition in vitro by autologous immunoglobulins (Ig) compared with heterologous ones. Analyses of two consecutive isolates taken 14 days apart, with regard to genotypes and sensitivity to growth inhibition in vitro, did not give any clear-cut indications on possible mechanisms leading to a reduced inhibitory activity in autologous parasite/antibody combinations. The frequent presence of persisting parasite clones in asymptomatic children indicates that the parasite possesses as yet undefined mechanisms to evade neutralizing immune responses. Transmission reducing measures such insecticide treated nets (ITNs) have been shown to be effective in reducing morbidity and mortality from malaria. However, concerns have been raised that ITNs usage could affect the acquisition of malaria immunity. We studied the effect of the use of insecticide treated curtains (ITC) on anti-malarial immune responses of children living in villages with ITC since birth. The use of ITC did neither affect the levels of parasite neutralizing immune responses nor the multiplicity of infection. These results indicate that the use of ITC does not interfere with the acquisition of anti-malarial immunity in children living in a malaria hyperendemic area. There is substantial evidence that the African Fulani tribe is markedly less susceptible to malaria infection compared to other sympatrically living ethnic tribes. We investigated the isotypic humoral responses against P. falciparum asexual blood stages in different ethnic groups living in sympatry in two countries exhibiting different malaria transmission intensities, Burkina Faso and Mali. We observed higher levels of the total malaria-specific-IgG and its cytophilic subclasses in individuals of the Fulani tribe as compared to non-Fulani individuals. Fulani individuals also showed higher levels of antibodies to measles antigen, indicating that the intertribal differences are not specific for malaria and might reflect a generally activated immune system in the Fulani.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden biologische Funktionen einer Proteinkinase des Erregers der Malaria tropica, genauer der „Plasmodium falciparum calcium dependent protein kinase 1“ (PfCDPK1), in parasitären Blutstadien untersucht.rnUm Einblicke in die Funktion der Kinase, die sie in den extrazellulären Kompartimenten des Parasiten übernimmt, zu gewinnen, wurden sechs Proteine untersucht, die dasselbe Translokationsignal wie PfCDPK1 besitzen. Es konnte gezeigt werden, dass fünf der untersuchten Proteine mit der PfCDPK1 im Bereich der parasitophoren Vakuole sowie des tubovesikulären Systems co-lokalisiert sind. Deletionsmutanten, denen das Translokationssignal fehlte, sowie ein Peptid, das lediglich aus diesem bestand, bestätigten, dass die Translokation in die extrazellulären Kompartimente von keinen weiteren Faktoren, außer dem Signalmotiv abhängt. Mit PfCAP und PfRKIP konnten zwei Regulatoren der PfCDPK1 identifiziert werden. PfARM, Pfrab_5b sowie PfGAP45 sind Substrate der PfCDPK1. Mit Hilfe von massenspektrometrischen Messungen wurde der Phosphorylierungsstatus der untersuchten Proteine durch die PfCDPK1 sowie der Autophosphorylierungsstatus der Kinase bestimmt, um Rückschlüsse auf regulatorische Prozesse ziehen zu können.rnDie Phosphorylierung von PfGAP45 durch die PfCDPK1 steht vermutlich mit dem Invasionsprozess des Parasiten in direktem Zusammenhang, da gezeigt wurde, dass eine Hemmung der Kinase mit PP1 einen 90%igen Rückgang an neu infizierten Erythrozyten zur Folge hatte.rnrn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmodium parasites, the causative agents of malaria, first invade and develop within hepatocytes before infecting red blood cells and causing symptomatic disease. Because of the low infection rates in vitro and in vivo, the liver stage of Plasmodium infection is not very amenable to biochemical assays, but the large size of the parasite at this stage in comparison with Plasmodium blood stages makes it accessible to microscopic analysis. A variety of imaging techniques has been used to this aim, ranging from electron microscopy to widefield epifluorescence and laser scanning confocal microscopy. High-speed live video microscopy of fluorescent parasites in particular has radically changed our view on key events in Plasmodium liver-stage development. This includes the fate of motile sporozoites inoculated by Anopheles mosquitoes as well as the transport of merozoites within merosomes from the liver tissue into the blood vessel. It is safe to predict that in the near future the application of the latest microscopy techniques in Plasmodium research will bring important insights and allow us spectacular views of parasites during their development in the liver.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4+ T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-a, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was undertaken on the pathology and associated schizont morphology of apicomplexan species of avian haematozoa. Some 32 birds from the families Artamidae, Meliphagidae, Oriolidae, Podargidae, Columbidae, Alcedinidae and Psittacidae were identified as having schizonts in various tissues. Based on blood stages observed, the probable relationship to tissue stages was considered. The majority of schizonts were referable to the genera Leucocytozoon and Haemoproteus . The comparative morphology of tissue stages previously described in the literature is discussed and the involvement of protozoa other than haematozoa considered. The naturally occurring infections in wild birds described in this study represent previously unreported data on the life-cycle stages involved. Some schizonts measured up to 640 mum. While pathological changes in some hosts were noticeable, in others no significant findings were observed. The role of endogenous stages in avian morbidity is discussed briefly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An electron microscopy study shows that the administration of a single dose (500 mg/kg, p.o.) of 2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1, 3, 4-thiadiazole induces in mice infected with Trypanosoma cruzi results in degenerative lesions of the intracellular stages. Ultrastructural alterations are detected as early as 6 hours after the drug administration and destruction of the parasites occurs within 18 - 36 hours. Trypomastigotes are cleared from the bloodstream 4 to 6 hours after treatment. The combined effect on both developmental stages is apparently responsible for the in vivo ejfects of this drug which is the most active drug ever tested in our laboratory in experimental Chagas' disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of chemokines has been extensively analyzed both in cancer risk and tumor progression. Among different cytokines, CXCR4 and its ligand CXCL12 have been recently subjected to a closer examination. The single-nucleotide polymorphism (SNP) rs1801157 (previously known as CXCL12-A/SDF1-3`A) in the CXCL12 gene and the relative expression of mRNA CXCL12 in peripheral blood were assessed in breast cancer patients, since the chemokine CXCL12 and its receptor CXCR4 regulate leukocyte trafficking and many essential biological processes, including tumor growth, angiogenesis and metastasis of different types of tumors. Genotyping was performed by PCR-RFLP (polymerase chain reaction followed by restriction fragment length polymorphism) using MspI restriction enzyme and the expression analyses by quantitative RT-PCR. No difference in GG genotype and allele A carrier frequencies were observed between breast cancer patients and healthy blood donors and nor when CXCL12 mRNA expression was assessed among patients with different tumor stages. However a significant difference was observed when CXCL12 mRNA relative expression was analyzed in breast cancer patients in accordance to the presence or absence of the CXCL12 rs1801157 allele A. Allele A breast cancer patients presented a mRNA CXCL12 expression about 2.1-fold smaller than GG breast cancer patients. Estrogen positive patients presenting CXCL12 allele A presented a significantly lower expression of CXCL12 in peripheral blood (p = 0.039) than GG hormone positive patients. Our findings demonstrated that allele A is associated with low expression of CXCL12 in the peripheral blood from ER-positive breast cancer patients, which suggests implications on breast cancer clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.