999 resultados para BISCAYNE-BAY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The management and restoration of the Biscayne Bay Coastal Wetlands (BBCW) is a complex issue. Unlike other natural areas under the supervision of the National Park System, the BBCW had endured many years of neglect and abuse by homesteaders who, prior to the establishment of Biscayne National Monument in 1968, had free reign of the area and tried to farm and develop the land by ditching and infilling. Furthermore, public works projects, dating back to the early 1900’s for mosquito control, land reclamation, and storm surge protection along with homesteader activities have combined to compartmentalize the coastal wetlands of present Biscayne National Park and adjacent marshes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Established as a National Park in 1980, Biscayne National Park (BISC) comprises an area of nearly 700 km2 , of which most is under water. The terrestrial portions of BISC include a coastal strip on the south Florida mainland and a set of Key Largo limestone barrier islands which parallel the mainland several kilometers offshore and define the eastern rim of Biscayne Bay. The upland vegetation component of BISC is embedded within an extensive coastal wetland network, including an archipelago of 42 mangrove-dominated islands with extensive areas of tropical hardwood forests or hammocks. Several databases and vegetation maps describe these terrestrial communities. However, these sources are, for the most part, outdated, incomplete, incompatible, or/and inaccurate. For example, the current, Welch et al. (1999), vegetation map of BISC is nearly 10 years old and represents the conditions of Biscayne National Park shortly after Hurricane Andrew (August 24, 1992). As a result, a new terrestrial vegetation map was commissioned by The National Park Service Inventory and Monitoring Program South Florida / Caribbean Network.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently there has been much activity in reclaiming the low-lying coastal areas of Dade County for residential use, by the addition of fill. The fill is obtained by digging canals both normal to and parallel to Biscayne Bay. The canals serve the additional purpose of providing an access to the Bay for boats. A problem needing to be considered is the effect that these canals will have on the ground-water resources. It is expected that the canals will have little effect on ground water in parts of the county distant from the coast, but their effect in coastal areas is a matter of concern. In order to predict what, may happen in the vicinity of these new canals if they are not equipped with adequate control structures, it is instructive to review what has happened in the vicinity of similar canals in the past. The U. S. Geological Survey, in cooperation with Dade County, the cities of Miami and Miami Beach, the Central and Southern Florida Flood Control District, and the Florida Geological Survey has collected water-level and salinity data on wells and canals in Dade County since 1939. Some of the agencies named, and others, collected similar data before 1939. Analysis of all the data shows that sea water in the Atlantic Ocean and Biscayne Bayis the sole source of salt-water contamination in the Biscayne aquifer of the Dade County area. (PDF has 19 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thirty sites were sampled in southern Biscayne Bay and Manatee Bay in December 1999 to determine the extent of toxicity in sediments. Analyses and assays included: pesticides and phenols in seawater; chemical contaminants in sediment; amphipod mortality, HRGS P450, sea urchin sperm fertilization and embryology, MicrotoxTM, MutatoxTM, grass shrimp AChE and juvenile clam mortality assays; sea urchin sperm, amphipod and oyster DNA damage; and benthic community assessment. Sediment sites near the mouth of canals showed evidence of contamination. Contaminant plumes and associated toxicity do not appear to extend seaward of the mouth of the canals in an appreciable manner. Concentrations of contaminants in the sediments in open areas of Biscayne and Manatee Bays are generally low. (PDF contains 140 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal, spatial and diel variation in the distribution and abundance of organisms is an inherent property of ecological systems. The present study describes these variations and the composition of decapod larvae from the surface waters of St Paul`s Rocks. The expeditions to the archipelago were carried out in April, August and November 2003, March 2004 and May 2005. Surface plankton samples were collected during the morning and dusk periods, inside the inlet and in increasing distances around the archipelago (similar to 150, 700 and 1500 m). The identification resulted in 51 taxa. Seven species, six genera and larvae of the families Pandalidae and Portunidae were identified for the first time in the area. The mean larval density varied from zero to 150.2 +/- 69.6 individuals 100 m(-3) in the waters surrounding the archipelago and from 1.7 +/- 3.0 to 12,827 +/- 15,073 individuals 100 m(-3) inside the inlet. Significant differences on larval density were verified between months and period of the day, but not among the three sites around the archipelago. Cluster and non-metric multidimensional scaling analysis indicated that the decapod larvae community was divided into benthic and pelagic assemblages. Indicator species analysis (ISA) showed that six Brachyura taxa were good indicators for the inlet, while three sergestids were the main species from the waters around the archipelago. These results suggest that St Paul`s Rocks can be divided into two habitats, based on larval composition, density and diversity values: the inlet and the waters surrounding the archipelago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Throughout the Biscayne Bay watershed, existing coastal wetland communities have been cut off from sheet flow for decades. With the expectation that reconnection of these wetlands to upstream water sources would alter existing hydrologic conditions and recreate a more natural sheet flow to Biscayne National Park, a demonstration project on freshwater rediversion was undertaken. The objectives of the project were to document the effects of freshwater diversion on: (a) swamp and nearshore water chemistry and hydrology; (b) soil development processes; (c) macrophyte and benthic algal community composition, structure and production; (d) abundance of epiphytic and epibenthic invertebrates; (e) zonation, production, and phenology of primary producers in the nearshore environment, and (f) exchanges of nutrients and particulates between nearshore and mangrove ecosystems.