940 resultados para BIS(N-HETEROCYCLIC CARBENE)
Resumo:
En aquesta tesi s'han sintetitzat macrocicles nitrogenats poliinsaturats de diferents mides i s'ha estudiat la seva reactivitat. S'han preparat macrocicles de quinze i setze baules triacetilènics i de quinze baules contenint dos triples i un doble enllaç a l'estructura. S'ha estudiat la ciclotrimerització [2+2+2] d'aquests macrocicles catalitzada per metalls de transició en dissolvents orgànics convencionals o en sals foses. S'han sintetitzat complexos de rodi contenint un lligand carbènic N-heterocíclic per tal d'utilitzar-los com a catalitzadors alternatius al complex de Wilkinson en les reaccions de ciclotrimerització dels macrocicles poliinsaturats i d'altres anàlegs oberts. Els complexos carbènics sintetitzats han presentat una eficiència lleugerament superior a la del catalitzador de Wilkinson. També s'ha iniciat un estudi mecanístic de la cicloisomerització d'aquests macrocicles induïda tèrmicament. Finalment, s'han preparat macrocicles de catorze i dinou baules contenint un nucli endiínic a més d'altres insaturacions i s'ha estudiat la corresponent ciclació de Bergman en estat sòlid.
Resumo:
1-Benzyl-3-(2-hydroxy-2-phenylethyl)imidazolium chloride (5), which is a precursor of an N-heterocyclic carbene ligand, in combination with palladium acetate, has been employed as an effective catalyst for the fluorine-free Hiyama reaction. A systematic study of the catalytic mixture, by a 32 factorial design, has revealed that both the amount of palladium and the Pd/NHC precursor ratio are important factors for obtaining good yields of the coupling products, indicating an interaction between them. The best catalytic system involves mixing 0.1 mol-% palladium acetate in a 1:5 ratio (Pd/salt 5), which allows the effective coupling of a range of aryl bromides and chlorides with trimethoxy(phenyl)silane. The Hiyama reactions are carried out in NaOH solution (50 % H2O w/w), at 120 °C under microwave irradiation during 60 min.
Resumo:
The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.
Resumo:
Significant enhancements in enantioselectivities and reaction efficiencies in asymmetric copper-catalysed C-H insertion and aromatic addition reactions of α-diazocarbonyl compounds in the presence of various group I salts are reported. For the first time in carbenoid chemistry, evidence for the critical role of the metal cation is described.
Resumo:
The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.
Resumo:
This thesis presents details of the design and development of novel tools and instruments for scanning tunneling microscopy (STM), and may be considered as a repository for several years' worth of development work. The author presents design goals and implementations for two microscopes. First, a novel Pan-type STM was built that could be operated in an ambient environment as a liquid-phase STM. Unique features of this microscope include a unibody frame, for increased microscope rigidity, a novel slider component with large Z-range, a unique wiring scheme and damping mechanism, and a removable liquid cell. The microscope exhibits a high level of mechanical isolation at the tunnel junction, and operates excellently as an ambient tool. Experiments in liquid are on-going. Simultaneously, the author worked on designs for a novel low temperature, ultra-high vacuum (LT-UHV) instrument, and these are presented as well. A novel stick-slip vertical coarse approach motor was designed and built. To gauge the performance of the motor, an in situ motion sensing apparatus was implemented, which could measure the step size of the motor to high precision. A new driving circuit for stick-slip inertial motors is also presented, that o ffers improved performance over our previous driving circuit, at a fraction of the cost. The circuit was shown to increase step size performance by 25%. Finally, a horizontal sample stage was implemented in this microscope. The build of this UHV instrument is currently being fi nalized. In conjunction with the above design projects, the author was involved in a collaborative project characterizing N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on Au(111) films. STM was used to characterize Au substrate quality, for both commercial substrates and those manufactured via a unique atomic layer deposition (ALD) process by collaborators. Ambient and UHV STM was then also used to characterize the NHC/Au(111) films themselves, and several key properties of these films are discussed. During this study, the author discovered an unexpected surface contaminant, and details of this are also presented. Finally, two models are presented for the nature of the NHC-Au(111) surface interaction based on the observed film properties, and some preliminary theoretical work by collaborators is presented.
Resumo:
The Chemically Modified Electrodes (CME) are widely used in electroanalytical chemistry as chemical sensors. The interest in the covalent anchoring of a redox mediator on the electrode surface is increasing, because it allows the sensibility and the selectivity of this kind of systems to improve. My work is situated in this field of research and involves the synthesis of new Iron(0) complexes that contain cyclopentadienone, N-heterocyclic carbene (NHC) and carbonyl ancillary ligands. These complexes have shown electrochemical properties similar to those of ferrocene (organometallic compound widely used as electrochemical sensor). These complexes have been properly functionalized with a EDOT group in the NHC ligand side chain that it was after used for the realization of Electrochemically Modified PEDOT thanks to copolymerization reaction between the functionalized complex and the EDOT in different amounts. All the synthetic steps were assisted by suitable characterizations (NMR, IR, ESI-MS, cyclic voltammetry and X-ray for the monomeric compound as imidazolium salt and NHC functionalized complexes; cyclic voltammetry, IR e SEM for the copolymers). The properties of the polymer as a selective sensor was preliminarily investigated for dopamine and 2-propanol.
Resumo:
This Thesis aims at presenting the general results achieved during my PhD, that was focused on the study and characterisation of new homoleptic and heteroleptic metal carbonyl clusters. From a dimensional point of view, the nuclearity of such species ranges from 2 to 44 metal atoms. Lower nuclearity compounds may be viewed as polymetallic complexes, whereas higher nuclearity species can reach the nanocluster size, by resembling to ultrasmall nanoparticles (USNPs). Initially, my research was focused on the investigation of small MCCs stabilised by N-Heterocyclic carbene (NHCs) ligands. At this regard, a general strategy for the synthesis of mono-anionic [Fe(CO)4(MNHC)]− and neutral Fe(CO)4(MNHC)2, Co(CO)4(MNHC) (M = Cu, Ag, Au; NHC = IMes, IPr) species has been developed. Furthermore, during this investigation, neutral trimetallic Fe(CO)4(MNHC)(M’NHC) (M, M’ = Cu, Ag, Au; M ≠ M'; NHC = IPr) and neutral heteroleptic Fe(CO)4(MNHC)(MNHC’) (M = Au; NHC = IMes, IPr) compounds have been isolated. Thermal treatment turned out to be an efficient method for the growth of the dimension of MCCs. Indeed, species of the type [M3Fe3(CO)12]3– and [M4Fe4(CO)16]4– (M = Ag, Au) as well as larger clusters were formed during the thermal treatment of the new Fe-M (M = Ag, Cu, Au) carbonyl compounds. These species inspired the investigation of promising reaction paths for the synthesis of Fe-M (M = Ag, Cu, Au) carbonyl compounds devoid of ancillary ligands and alloy MCCs, such as the heterometallic [MxM’5-xFe4(CO)16]3− (M, M' = Cu, Ag, Au; M ≠ M'; x = 0-5) carbonyl clusters. The second part of this Thesis regards high nuclearity MCCs. In particular, new strategies for the growth of platinum carbonyl clusters involving, for instance, the employment of bidentate phosphines are described, as well as the syntheses and the thermal decomposition of new Ni-M (Pd, Pt) carbonyl clusters.
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.
Resumo:
Il presente lavoro di tesi si inserisce in un progetto di ricerca volto alla sintesi di nuovi complessi di metalli di transizione per lo sviluppo di catalizzatori da impiegare in reazioni di catalisi omogenea. In particolare il mio progetto si è concentrato sulla sintesi di complessi organometallici di manganese con leganti carbenici N-eterociclici (NHC). La scelta dei leganti è stata effettuata in modo tale da poter avere leganti chelanti NHC di tipo MIC (mesoionic carbene) sintetizzati tramite cicloaddizione tra un alchino ed un azide catalizzata da rame (CuAAC) e N-alchilazione. Lo studio di questi complessi a base di manganese è ancora tutt’oggi agli albori, leganti NHC vengono molto utilizzati grazie alla possibilità di variarne le proprietà steriche ed elettroniche e alla possibilità di formare legami forti con quasi tutti i metalli. Il manganese è stato scelto poiché un elemento abbondante, poco tossico e poco costoso. The present thesis work is part of a research project aimed at the synthesis of new transition metal complexes to be used in homogeneous catalysis reactions. In particular my project focused on the synthesis of manganese organometallic complexes with N-heterocyclic carbene ligands (NHC). The choice of ligands was carried out to have NHC chelating ligands of the class of MIC (mesoionic carbene). These ligands are synthesized by cycloaddition between alkyl and azide with a copper-catalyzed reaction (CuAAC) and N-alkylation in order to obtain MIC after deprotonation. The study of these manganese-based complexes is still in its infancy today, NHC ligands are widely used thanks to the possibility of varying their steric and electronic properties and the possibility of forming strong bonds with almost all metals. The choice of manganese was made because is an abundant, low-toxic and inexpensive element.
Resumo:
The mechanism of homologation of bioethanol to butanol and higher alcohols via the Guerbet reaction was computationally and experimentally investigated. The catalytic pathway involves a ruthenium-based complex and a base co-catalyst which work simultaneously. Due to selectivity issues, secondary products were formed and high competition between main pathway and side reactions was recorded. Herein, the overall catalytic mechanism for all the processes involved in was investigated, also considering the principal side reactions, using density functional theory (DFT) methods and experiments to confirm theoretical outcomes. Due to the complexity of the reaction network, kinetic simulations were established from DFT results, confirming experimental products distribution and giving insights into the factors governing the reaction mechanism.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N1 1 1 2(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] by cyclic voltammetry and controlled-potential electrolysis. The results show that the reaction leads to the formation of the expected cyclic compounds, which are important intermediates in the synthesis of natural products with possible biological activities.
Resumo:
Aufbauend auf den Arbeiten von Bielawski et al. und Siemeling et al. wurden im Rahmen dieser Arbeit unsymmetrisch substituierte N-heterocyclische Carbene mit einem 1,1ʹ-Ferrocendiyl-Rückgrat synthetisiert. Ausgehend von der literaturbekannten Verbindung 1,1’-Diaminoferrocen gelang die Einführung der exocyclischen Substituenten an den Stickstoffatomen lediglich durch die Anpassung der Stöchiometrie in den einzelnen Syntheseschritten. Es wurden die folgenden drei NHCs synthetisiert: N-(2-Adamantyl)-N’-neopentyldiaminocarben[3]ferrocenophan (Ad/Np), N-Neopentyl-N’-phenyldiaminocarben[3]ferrocenophan (Ph/Np) und N-(9-Anthracenylmethyl)-N’-neopentyldiaminocarben[3]ferrocenophan (Acm/Np). Das Carben Ad/Np konnte dabei erfolgreich isoliert werden, während die anderen zwei Carbene als Liganden in Komplexen des Typs [RhCl(COD)(NHC)] stabilisiert wurden. Von allen drei Carbenen wurden Rhodium-Carben-Komplexe des Typs [RhCl(COD)(NHC)] und cis-[RhCl(CO)2(NHC)] synthetisiert. Anhand der röntgenkristallographischen und NMR-spektroskopischen Untersuchungen dieser Rhodiumkomplexe konnten in allen sechs Komplexen anagostische Wechselwirkungen zwischen dem zentralen Rhodiumatom und den Wasserstoffatomen der exocyclischen Substituenten, die sich in α-Position zu den Stickstoffatomen befinden, nachgewiesen werden. Des Weiteren wurden anhand der cis-[RhCl(CO)2(NHC)]-Komplexe die TEP-Werte der Carbene bestimmt. Gemessen in DCM betragen diese 2049 cm-1 (Ad/Np), 2049 cm-1 (Ph/Np) und 2051 cm-1 (Acm/Np). Unabhängig von den unsymmetrisch substituierten NHCs mit einem 1,1ʹ-Ferrocendiyl-Rückgrat wurde im Rahmen dieser Arbeit die Eignung von NHCs als Adsorbatspezies für selbstorganisierende Monolagen überprüft. Hierzu wurden Tetraalkylimidazol-2-ylidene synthetisiert, welche als 0.01 mM Lösung auf Gold(111)-Substrate aufgebracht wurden. Die Goldsubstrate wurden anschließend mittels XPS untersucht. Die XPS-Analyse der modifizierten Goldsubstrate zeigte, dass eine Bindung der Carbene auf der Oberfläche stattgefunden hat. Es zeigte sich allerdings auch, dass keine SAM gebildet wurden, da die Oberfläche signifikant mit kohlen- und sauerstoffbasierten Verbindungen kontaminiert ist. Dabei kann vermutet werden, dass die Carbene nicht ausschließlich auf der Goldoberfläche selbst, sondern auch mit den auf der Oberfläche befindlichen Verbindungen reagiert haben.
Resumo:
Carbenes photogenerated from the novel bisdiazirine, 1, 3-bis(3-(trifluoromethyl)diazirin-3-yl) benzene 1, have been applied successfully to cross-linking of mono-methyl poly(ethylene oxide) (MePEO5000) in the presence of dichloromethane, leading to the simultaneous incorporation of alkylhalide functionalities. The PEO-based gels swell in a wide range of solvents with polarity index values varying from 3.1 to 9.0. Reaction of the alkylhalide functionalities present in the gels with 4-phenylazophenol provided loading capacities of up to 0.20 mmol g(-1) and demonstrated the potential of these materials for gel-phase synthesis applications. (C) 2008 Elsevier Ltd. All rights reserved.