113 resultados para BIOSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface reaction methodology was implicated in the optimization of hexavalent chromium removal onto lignin with respect to the process parameters. The influence of altering the conditions for removal of chromium(VI), for instance; solution pH, ionic strength, initial concentration, the dose of biosorbent, presence of other metals (Zn and Cu), presence of salts and biosorption-desorption studies, were investigated. It was found that the biosorption capacity of lignin depends on solution pH, with a maximum biosorption capacity for chromium at pH 2. Experimental equilibrium data were fitted to five different isotherm models by non-linear regression method, however, the biosorption equilibrium data were well interpreted by the Freundlich isotherm. The maximum biosorption capacities (q(max)) obtained using Dubinin-Radushkevich and Khan isotherms for Cr(VI) biosorption are 31.6 and 29.1 mg/g. respectively. Biosorption showed pseudo second order rate kinetics at different initial concentrations of Cr(VI). The intraparticle diffusion study indicated that film diffusion may be involved in the current study. The percentage removal of chromium on lignin decreased significantly in the presence of NaHCO3 and K2P2O7 salts. Desorption data revealed that nearly 70% of the Cr(VI) adsorbed on lignin could be desorbed using 0.1 M NaOH. It was evident that the biosorption mechanism involves the attraction of both hexavalent chromium (anionic) and trivalent chromium (cationic) onto the surface of lignin. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of solution pH, initial concentration and contact time onto olive stone (OS) biomass has been investigated. The main objectives of the current study are to: (i) study the chemistry and the mechanism of ARS and MB biosorption onto olive stone and the type of OS–ARS, MB interactions occurring, (ii) study the biosorption equilibrium and kinetic experimental data required for the design and operation of column reactors. Equilibrium biosorption isotherms and kinetics were also examined. Experimental equilibrium data were fitted to four different isotherms by non-linear regression method, however, the biosorption experimental data for ARS and MB dyes were well interpreted by the Temkin and Langmuir isotherms, respectively. The maximum monolayer adsorption capacity for ARS and MB dyes were 109.0 and 102.6 mg/g, respectively. The kinetic data of the two dyes could be better described by the pseudo second-order model. The data showed that olive stone can be effectively used for removing dyes from wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, olive stone (OS) was utilized to investigate its capacity as biosorbent for methylene blue (MB) and Cr(III), which are usually present in textile industry effluents. Equilibrium and kinetic experiments were performed in batch experiments. The biosorption process followed pseudo-second-order kinetics. The equilibrium data were fitted with several models, but Langmuir and Sips models best reproduced the experimental results. Maximum biosorption capacities were 3.296 mg/g (0.0116 mmol/g) and 4.990 mg/g (0.0960 mmol/g) for MB and Cr(III), respectively. Several operation variables, such as
biosorbent mass, flow rate, and initial concentration on the removal of dye and metal, were evaluated in column system. The removal efficiency improved as OS mass increased and decreased when flow rate and initial concentration increased. Also, MB uptake was substantially decreased by increasing the initial concentration of Cr(III), ranging from 6.09 to 2.75 mg/g. These results show that the presence of Cr(III) significantly modifies the biosorption capacity of MB by the OS. These results suggest that OS is a potential low-cost food industry waste for textile industry wastewater treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cochin, commercial capital of Kerala, located on the west-coast of South India has a large number of chemical and sea food industries. Earlier studies in the past indicated that these industries contribute to heavy metal pollution, particularly mercury, copper, and cadmium, in Cochin backwater. Hence, in the present study, it was desired to isolate cadmium resistant bacteria from effluent discharged by chemical industry with a view to develop an ideal bioremediation process for safe discharge of industrial effluent in to the nearby aquatic environment. Effluent from three industries, located in the industrial belt of Cochin, were collected from the discharge point and cadmium resistant bacteria were screened using standard microbiological techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth (RE) metals are essentials for the manufacturing of high-technology products. The separation of RE is complex and expensive; biosorption is an alternative to conventional processes. This work focuses on the biosorption of monocomponent and bicomponent solutions of lanthanum(III) and neodymium(III) in fixed-bed columns using Sargassum sp. biomass. The desorption of metals with HCl 0.10 mol L-1 from loaded biomass is also carried out with the objective of increasing the efficiency of metal separation. Simple models have been successfully used to model breakthrough curves (i.e., Thomas, Bohart-Adams, and Yoon-Nelson equations) for the biosorption of monocomponent solutions. From biosorption and desorption experiments in both monocomponent and bicomponent solutions, a slight selectivity of the biomass for Nd(III) over La(III) is observed. The experiments did not find an effective separation of the RE studied, but their results indicate a possible partition between the metals, which is the fundamental condition for separation perspectives. (C) 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluates the potential of a Sargassum biomass for the biosorption of Sm(III) and Pr(III) using synthetic solutions. Under selected experimental conditions (excess of sorbent), the biosorption kinetics were fast: 30-40 min were sufficient for the complete recovery of the metals. The kinetic profiles were modeled using the pseudo-second order rate equation. The second objective of this study was to evaluate the possibility to separate these metals. Biosorption isotherms and uptake kinetics for the two metals (in binary component solutions) were almost overlapped. The biomass did not show significant selectivity for any of these two metals, in batch reactor. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosorption of neodymium in batch experiments took similar to 2 h to achieve the equilibrium biosorbent-metal for all microorganisms tested. The best biosorption coefficient at a constant pH value of 1.5 was obtained using the microalgae Monoraphidium sp. (1521 mg g(-1) cell), followed by Bakers' yeast (313 mg g(-1) cell), Penicillium sp. (178 mg g(-1) cell), and activated carbon (61 mg g(-1) cell). When compared to the biosorption of other metals, these results pointed out to the application of biosorption in neodymium recovery from acidic solutions. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile industry consumes large quantities of water and chemicals, especially in dyeing and finishing processes. Textile dye adsorption can be accomplished with natural or synthetic compounds. Cell immobilization using biomaterials allows the reduction of toxicity and mechanical resistance and opens spaces within the matrix for cell growth. The use of natural materials, such as sugarcane bagasse, is promising due to the low costs involved. The aim of the present study was to evaluate the use of sugarcane bagasse treated with either polyethyleneimine (PEI), NaOH or distilled water in the cell immobilization of Saccharomyces cerevisiae for textile dye removal. Three different adsorption tests were conducted: treated sugarcane bagasse alone, free yeast cells and bagasse-immobilized yeast cells. Yeast immobilization was 31.34% with PEI-treated bagasse, 8.56% with distilled water and 22.54% with NaOH. PEI-treated bagasse exhibited the best removal rates of the dye at all pH values studied (2.50, 4.50 and 6.50). The best Acid Black 48 adsorption rates were obtained with use of free yeast cells. At pH 2.50, 1 mg of free yeast cells was able to remove 5488.49 g of the dye. The lowest adsorption capacity rates were obtained using treated bagasse alone. However, the use of bagasse-immobilized cells increased adsorption efficiency from 20 to 40%. The use of immobilized cells in textile dye removal is very attractive due to adsorbed dye precipitation, which eliminates the industrial need for centrifugation processes. Dye adsorption using only yeast cells or sugarcane bagasse requires separation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated kinetic and adsorption physicochemical models for the biosorption process of lanthanum, neodymium, europium, and gadolinium by Sargassum sp. in batch systems. The results showed: (a) the pseudo-second order kinetic model was the best approximation for the experimental data with the metal adsorption initial velocity parameter in 0.042-0.055 mmol.g -1.min-1 (La < Nd < Gd < Eu); (b) the Langmuir adsorption model presented adequate correlation with maximum metal uptake at 0.60-0.70 mmol g-1 (Eu < La < Gd < Nd) and the metal-biomass affinity parameter showed distinct values (Gd < Nd < Eu < La: 183.1, 192.5, 678.3, and 837.3 L g-1, respectively); and (c) preliminarily, the kinetics and adsorption evaluation did not reveal a well-defined metal selectivity behavior for the RE biosorption in Sargassum sp., but they indicate a possible partition among RE studied. © (2009) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosorption of Cd(II) and Pb(II) ions on biomass and exopolysaccharide (EPS) produced by Colletotrichum sp. fungus has been investigated as a function of contact time, initial pH, initial metal ion concentration, and initial adsorbent concentration in a batch system. Adsorption equilibrium was described by Freundlich and Langmuir isotherms. Adsorption was characterized through granulometry, SEM and EDX analysis. Then, studies were performed to regenerate the adsorbent. Biosorption of metals by biomass and EPS were best described by the Langmuir and Freundlich isotherm, respectively. Results of thermodynamic investigations showed that adsorption reactions were spontaneous (ΔG° < 0), exothermal, and mainly physical. The EPS was able to remove 79 and 98% of cadmium and lead, respectively, and the biomass removed 85 and 84% of cadmium and lead, respectively, in a solution with initial concentration 100 mg L-1, and the four adsorption-desorption cycles of all adsorbents showed up with great regenerative capacity and relative stability after these four cycles, the high potential of these biological materials in sorption has been shown. © 2013 Copyright Balaban Desalination Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)