1000 resultados para BIM Implementation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ineffectiveness of current design processes has been well studied and has resulted in widespread calls for the evolution and development of new management processes. Even following the advent of BIM, we continue to move from one stage to another without necessarily having resolved all the issues. CAD design technology, if well handled, could have significantly raised the level of quality and efficiency of current processes, but in practice this was not fully realized. Therefore, technology alone can´t solve all the problems and the advent of BIM could result in a similar bottleneck. For a precise definition of the problem to be solved we should start by understanding what are the main current bottlenecks that have yet to be overcome by either new technologies or management processes, and the impact of human behaviour-related issues which impact the adoption and utilization of new technologies. The fragmented and dispersed nature of the AEC sector, and the huge number of small organizations that comprise it, are a major limiting factor. Several authors have addressed this issue and more recently IDDS has been defined as the highest level of achievement. However, what is written on IDDS shows an extremely ideal situation on a state to be achieved; it shows a holistic utopian proposition with the intent to create the research agenda to move towards that state. Key to IDDS is the framing of a new management model which should address the problems associated with key aspects: technology, processes, policies and people. One of the primary areas to be further studied is the process of collaborative work and understanding, together with the development of proposals to overcome the many cultural barriers that currently exist and impede the advance of new management methods. The purpose of this paper is to define and delimit problems to be solved so that it is possible to implement a new management model for a collaborative design process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest internationally in developing product libraries to support the use of BIM. Product library initiatives are driven by national bodies, manufacturers and private companies who see their potential. A major issue with the production and distribution of product information for BIM is that separate library objects need to be produced for all of the different software systems that are going to use the library. This increases the cost of populating product libraries and also increases the difficulty in maintaining consistency between the representations for the different software over time. This paper describes a project which uses “software transformation” technology from the field of software engineering to support the definition of a single generic representation of a product which can then be automatically converted to the format required by receiving software. The paper covers the current state of implementation of the product library, the technology underlying the transformations for the currently supported software and the business model for creating a national library in Australia. This is placed within the context of other current product library systems to highlight the differences. The responsibilities of the various actors involved in supporting the product library are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Construction industry accounts for a tenth of global GDP. Still, challenges such as slow adoption of new work processes, islands of information, and legal disputes, remain frequent, industry-wide occurrences despite various attempts to address them. In response, IT-based approaches have been adopted to explore collaborative ways of executing construction projects. Building Information Modelling (BIM) is an exemplar of integrative technologies whose 3D-visualisation capabilities have fostered collaboration especially between clients and design teams. Yet, the ways in which specification documents are created and used in capturing clients' expectations based on industry standards have remained largely unchanged since the 18th century. As a result, specification-related errors are still common place in an industry where vast amounts of information are consumed as well as produced in the course project implementation in the built environment. By implication, processes such as cost planning which depend on specification-related information remain largely inaccurate even with the use of BIM-based technologies. This paper briefly distinguishes between non-BIM-based and BIM-based specifications and reports on-going efforts geared towards the latter. We review exemplars aimed at extending Building Information Models to specification information embedded within the objects in a product library and explore a viable way of reasoning about a semi-automated process of specification using our product library.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BIM as a suite of technologies has been enabled by the significant improvements in IT infrastructure, the capabilities of computer hardware and software, the increasing adoption of BIM, and the development of Industry Foundation Classes (IFC) which facilitate the sharing of information between firms. The report highlights the advantages of BIM, particularly the increased utility and speed, better data quality and enhanced fault finding in all construction phases. Additionally BIM promotes enhanced collaborations and visualisation of data mainly in the design and construction phase. There are a number of barriers to the effective implementation of BIM. These include, somewhat paradoxically, a single detailed model (which precludes scenarios and development of detailed alternative designs); the need for three different interoperability standards for effective implementation; added work for the designer which needs to be recognised and remunerated; the size and complexity of BIM, which requires significant investment in human capital to enable the realisation of its full potential. There are also a number of challenges to implementing BIM. The report has identified these as a range of issues concerning: IP, liability, risks and contracts, and the authenticity of users. Additionally, implementing BIM requires investment in new technology, skills training and development of news ways of collaboration. Finally, there are likely to be Trade Practices concerns as requiring certain technology owned by relatively few firms may limit

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three strategically important uses of IT in the construction industry are the storage and management of project documents on webservers (EDM), the electronic handling of orders and invoices between companies (EDI) and the use of 3-D models including non-geometrical attributes for integrated design and construction (BIM). In a broad longitudinal survey study of IT use in the Swedish Construction Industry the extent of use of these techniques was measured in 1998, 2000 and 2007. The results showed that EDM and EDI are currently already well-established techniques whereas BIM, although it promises the biggest potential benefits to the industry, only seems to be at the beginning of adoption. In a follow-up to the quantitative studies, the factors affecting the decisions to implement EDM, EDI and BIM as well as the actual adoption processes, were studied using semi-structured interviews with practitioners. The theoretical basis for the interview studies was informed by theoretical frameworks from IT-adoption theory, where in particular the UTAUT model has provided the main basis for the analyses presented here. The results showed that the decisions to take the above technologies into use are made on three differ- ent levels: the individual level, the organizational level in the form of a company, and the organiza- tional level in the form of a project. The different patterns in adoption can to some part be explained by where the decisions are mainly taken. EDM is driven from the organisation/project level, EDI mainly from the organisation/company level, and BIM is driven by individuals pioneering the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of building information modeling (BIM) to positively impact projects in the AEC through greater collaboration and integration is widely acknowledged. This paper aims to examine the development of BIM and how it can contribute to the cold-formed steel (CFS) building industry. This is achieved through the adoption of a qualitative methodology encompassing a literature review, exploratory interviews with industry experts, culminating in the development of e-learning material for the sector. In doing so, the research team have collaborated with one of the United Kingdom’s largest cold-formed steel designer/fabricators. By demonstrating the capabilities of BIM software and providing technical and informative videos in its creation, this project has found two key outcomes. Firstly, to provide invaluable assistance in the transition from traditional processes to a fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. Secondly, to demonstrate BIM’s potential not only within CFS companies, but also within the AEC sector as a whole. As the flexibility, adaptability and interoperability of BIM software is alluded to, the results indicate that the introduction and development of BIM and the underlying ethos suggests that it is a key tool in the development of the industry as a whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho insere-se no âmbito de um estágio curricular realizado no gabinete de projetos SE2P, durante o qual foram desenvolvidas ferramentas de cálculo estrutural em situação de incêndio, integradas numa metodologia de trabalho que segue os princípios inerentes à tecnologia BIM (Building Information Modeling). Em particular foi implementado um procedimento de análise ao fogo segundo os modelos simplificados prescritos pelos Eurocódigos. Estes modelos garantem a segurança estrutural, permitindo, de forma rápida e eficiente, a determinação das necessidades de proteção passiva para diferentes cenários, tendo em vista a obtenção da solução mais económica. Esta dissertação, para além da apresentação do trabalho desenvolvido em regime de estágio curricular, objetivou dotar o leitor de um documento que introduza os principais conceitos relativos ao cálculo estrutural em situação de incêndio, indicando as várias opções de análise e respetivas vantagens e desvantagens, ajudando a definir a sua adequabilidade ao projeto em estudo. Neste contexto é efetuada uma introdução geral ao fenómeno do fogo e às medidas mais correntes de proteção, indicando-se os documentos normativos aplicáveis tanto ao cálculo estrutural como aos materiais de proteção. É também abordada a interação entre as várias normas que devem ser consultadas quando é efetuada uma análise ao fogo, e quais se aplicam a cada fase da análise. Efetua-se uma clara distinção entre a análise do comportamento térmico e mecânico, indicando-se as principais propriedades dos materiais em função do tipo de análise e a forma como são afetadas pela temperatura. No campo da análise do comportamento térmico faz-se essencialmente referência aos modelos de cálculo simplificados do desenvolvimento da temperatura em elementos metálicos e vigas mistas, com e sem proteção passiva. No que concerne ao campo da análise do comportamento mecânico são descritos os modelos de cálculo simplificados para a verificação da segurança estrutural atendendo às ações e combinações em situação de incêndio e à perda de resistência a temperaturas elevadas. Relativamente ao trabalho desenvolvido na SE2P, relativo ao desenvolvimento de ferramentas de cálculo e a sua implementação na análise ao fogo, realiza-se uma descrição detalhada de todo o processo, e da forma como se integra no conceito BIM, utilizando informações provenientes da modelação das estruturas e introduzindo novos dados ao modelo. Realizou-se também a aplicação de todo o procedimento de análise e das ferramentas desenvolvidas, a um caso de estudo baseado num edifício de habitação. Este caso de estudo serviu também para criar cenários de otimização utilizando-se referências de preços de mercado para o aço, sua transformação em fábrica e sistemas de proteção passiva, demonstrando-se a dificuldade em encontrar caminhos rápidos e diretos de decisão no processo de otimização.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous Building Information Modelling (BIM) tools are well established and potentially beneficial in certain uses. However, issues of adoption and implementation persist, particularly for on-site use of BIM tools in the construction phase. We describe an empirical case-study of the implementation of an innovative ‘Site BIM’ system on a major hospital construction project. The main contractor on the project developed BIM-enabled tools to allow site workers using mobile tablet personal computers to access design information and to capture work quality and progress data on-site. Accounts show that ‘Site BIM’, while judged to be successful and actively supporting users, was delivered through an exploratory and emergent development process of informal prototyping. Technical IT skills were adopted into the construction project through personal relationships and arrangements rather than formal processes. Implementation was driven by construction project employees rather than controlled centrally by the corporate IT function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the technical features and requirements of Building Information Modelling (BIM)-servers as collaboration platforms for multi-disciplinary building and construction projects. Multi-disciplinary collaboration is the norm in the Architecture, Engineering, and Construction (AEC) industries, especially in complex projects. The widespread adoption of object-oriented Computer-aided Design (CAD) tools that support BIM capabilities has generated greater interest in model based exchange of information across disciplines and consultants who have traditionally collaborated through the frequent exchange of 2D drawings and documents. BIM-servers are collaboration platforms that are expected to provide the technical capability to support this inter-disciplinary exchange of 3D models in addition to intelligent management of the related drawings, documents and other forms of data. Since BIM-servers are a recent technical development a review of their technical features can help further development. This paper serves this objective by providing a review of the technical features and requirements for using BIM-servers as multi-disciplinary collaboration platforms on building and construction projects. The methodologies include focus group interviews (FIGs) with representatives from the diverse AEC disciplines, a case study on a state-of-the-art BIM-server, and a critical review and analysis of current collaboration platforms that are available to the AEC industries. This paper concludes that greater emphasis should be placed on supporting technical requirements to facilitate technology management and implementation across disciplines. Their implications for user-centric technology development in design and construction industry are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria. © 2014, The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los procesos de diseño y construcción en Arquitectura han mostrado un desarrollo de optimización históricamente muy deficiente cuando se compara con las restantes actividades típicamente industriales. La aspiración constante a una industrialización efectiva, tanto en aras de alcanzar mayores cotas de calidad así como de ahorro de recursos, recibe hoy una oportunidad inmejorable desde el ámbito informático: el Building Information Modelling o BIM. Lo que en un inicio puede parecer meramente un determinado tipo de programa informático, en realidad supone un concepto de “proceso” que subvierte muchas rutinas hoy habituales en el desarrollo de proyectos y construcciones arquitectónicas. La inclusión y desarrollo de datos ligados al proyecto, desde su inicio hasta el fin de su ciclo de vida, conlleva la oportunidad de crear una realidad virtual dinámica y actualizable, que por añadidura posibilita su ensayo y optimización en todos sus aspectos: antes y durante su ejecución, así como vida útil. A ello se suma la oportunidad de transmitir eficientemente los datos completos de proyecto, sin apenas pérdidas o reelaboración, a la cadena de fabricación, lo que facilita el paso a una industrialización verdaderamente significativa en edificación. Ante una llamada mundial a la optimización de recursos y el interés indudable de aumentar beneficios económicos por medio de la reducción del factor de incertidumbre de los procesos, BIM supone un opción de mejora indudable, y así ha sido reconocido a través de la inminente implantación obligatoria por parte de los gobiernos (p. ej. Gran Bretaña en 2016 y España en 2018). La modificación de procesos y roles profesionales que conlleva la incorporación de BIM resulta muy significativa y marcará el ejercicio profesional de los futuros graduados en las disciplinas de Arquitectura, Ingeniería y Construcción (AEC por sus siglas en inglés). La universidad debe responder ágilmente a estas nuevas necesidades incorporando esta metodología en la enseñanza reglada y aportando una visión sinérgica que permita extraer los beneficios formativos subyacentes en el propio marco BIM. En este sentido BIM, al aglutinar el conjunto de datos sobre un único modelo virtual, ofrece un potencial singularmente interesante. La realidad tridimensional del modelo, desarrollada y actualizada continuamente, ofrece al estudiante una gestión radicalmente distinta de la representación gráfica, en la que las vistas parciales de secciones y plantas, tan complejas de asimilar en los inicios de la formación universitaria, resultan en una mera petición a posteriori, para ser extraída según necesidad del modelo virtual. El diseño se realiza siempre sobre el propio modelo único, independientemente de la vista de trabajo elegida en cada momento, permaneciendo los datos y sus relaciones constructivas siempre actualizados y plenamente coherentes. Esta descripción condensada de características de BIM preconfiguran gran parte de las beneficios formativos que ofrecen los procesos BIM, en especial, en referencia al desarrollo del diseño integrado y la gestión de la información (incluyendo TIC). Destacan a su vez las facilidades en comprensión visual de elementos arquitectónicos, sistemas técnicos, sus relaciones intrínsecas así como procesos constructivos. A ello se une el desarrollo experimental que la plataforma BIM ofrece a través de sus software colaborativos: la simulación del comportamiento estructural, energético, económico, entre otros muchos, del modelo virtual en base a los datos inherentes del proyecto. En la presente tesis se describe un estudio de conjunto para explicitar tanto las cualidades como posibles reservas en el uso de procesos BIM, en el marco de una disciplina concreta: la docencia de la Arquitectura. Para ello se ha realizado una revisión bibliográfica general sobre BIM y específica sobre docencia en Arquitectura, así como analizado las experiencias de distintos grupos de interés en el marco concreto de la enseñanza de la en Arquitectura en la Universidad Europea de Madrid. El análisis de beneficios o reservas respecto al uso de BIM se ha enfocado a través de la encuesta a estudiantes y la entrevista a profesionales AEC relacionados o no con BIM. Las conclusiones del estudio permiten sintetizar una implantación de metodología BIM que para mayor claridad y facilidad de comunicación y manejo, se ha volcado en un Marco de Implantación eminentemente gráfico. En él se orienta sobre las acciones docentes para el desarrollo de competencias concretas, valiéndose de la flexibilidad conceptual de los Planes de Estudio en el contexto del Espacio Europeo de Educación Superior (Declaración de Bolonia) para incorporar con naturalidad la nueva herramienta docente al servicio de los objetivos formativo legalmente establecidos. El enfoque global del Marco de Implementación propuesto facilita la planificación de acciones formativas con perspectiva de conjunto: combinar los formatos puntuales o vehiculares BIM, establecer sinergias transversales y armonizar recursos, de modo que la metodología pueda beneficiar tanto la asimilación de conocimientos y habilidades establecidas para el título, como el propio flujo de aprendizaje o learn flow BIM. Del mismo modo reserva, incluso visualmente, aquellas áreas de conocimiento en las que, al menos en la planificación actual, la inclusión de procesos BIM no se considera ventajosa respecto a otras metodologías, o incluso inadecuadas para los objetivos docentes establecidos. Y es esta última categorización la que caracteriza el conjunto de conclusiones de esta investigación, centrada en: 1. la incuestionable necesidad de formar en conceptos y procesos BIM desde etapas muy iniciales de la formación universitaria en Arquitectura, 2. los beneficios formativos adicionales que aporta BIM en el desarrollo de competencias muy diversas contempladas en el currículum académico y 3. la especificidad del rol profesional del arquitecto que exigirá una implantación cuidadosa y ponderada de BIM que respete las metodologías de desarrollo creativo tradicionalmente efectivas, y aporte valor en una reorientación simbiótica con el diseño paramétrico y fabricación digital que permita un diseño finalmente generativo. ABSTRACT The traditional architectural design and construction procedures have proven to be deficient where process optimization is concerned, particularly when compared to other common industrial activities. The ever‐growing strife to achieve effective industrialization, both in favor of reaching greater quality levels as well as sustainable management of resources, has a better chance today than ever through a mean out of the realm of information technology, the Building Information Modelling o BIM. What may initially seem to be merely another computer program, in reality turns out to be a “process” concept that subverts many of today’s routines in architectural design and construction. Including and working with project data from the very beginning to the end of its full life cycle allows for creating a dynamic and updatable virtual reality, enabling data testing and optimizing throughout: before and during execution, all the way to the end of its lifespan. In addition, there is an opportunity to transmit complete project data efficiently, with hardly any loss or redeveloping of the manufacture chain required, which facilitates attaining a truly significant industrialization within the construction industry. In the presence of a world‐wide call for optimizing resources, along with an undeniable interest in increasing economic benefits through reducing uncertainty factors in its processes, BIM undoubtedly offers a chance for improvement as acknowledged by its imminent and mandatory implementation on the part of governments (for example United Kingdom in 2016 and Spain in 2018). The changes involved in professional roles and procedures upon incorporating BIM are highly significant and will set the course for future graduates of Architecture, Engineering and Construction disciplines (AEC) within their professions. Higher Education must respond to such needs with swiftness by incorporating this methodology into their educational standards and providing a synergetic vision that focuses on the underlying educational benefits inherent in the BIM framework. In this respect, BIM, in gathering data set under one single virtual model, offers a uniquely interesting potential. The three‐dimensional reality of the model, under continuous development and updating, provides students with a radically different graphic environment, in which partial views of elevation, section or plan that tend characteristically to be difficult to assimilate at the beginning of their studies, become mere post hoc requests to be ordered when needed directly out the virtual model. The design is always carried out on the sole model itself, independently of the working view chosen at any particular moment, with all data and data relations within construction permanently updated and fully coherent. This condensed description of the features of BIM begin to shape an important part of the educational benefits posed by BIM processes, particularly in reference to integrated design development and information management (including ITC). At the same time, it highlights the ease with which visual understanding is achieved regarding architectural elements, technology systems, their intrinsic relationships, and construction processes. In addition to this, there is the experimental development the BIM platform grants through its collaborative software: simulation of structural, energetic, and economic behavior, among others, of the virtual model according to the data inherent to the project. This doctoral dissertation presents a broad study including a wide array of research methods and issues in order to specify both the virtues and possible reservations in the use of BIM processes within the framework of a specific discipline: teaching Architecture. To do so, a literature review on BIM has been carried out, specifically concerning teaching in the discipline of Architecture, as well as an analysis of the experience of different groups of interest delimited to Universidad Europea de Madrid. The analysis of the benefits and/or limitations of using BIM has been approached through student surveys and interviews with professionals from the AEC sector, associated or not, with BIM. Various diverse educational experiences are described and academic management for experimental implementation has been analyzed. The conclusions of this study offer a synthesis for a Framework of Implementation of BIM methodology, which in order to reach greater clarity, communication ease and user‐friendliness, have been posed in an eminently graphic manner. The proposed framework proffers guidance on teaching methods conducive to the development of specific skills, taking advantage of the conceptual flexibility of the European Higher Education Area guidelines based on competencies, which naturally facilitate for the incorporation of this new teaching tool to achieve the educational objectives established by law. The global approach of the Implementation Framework put forth in this study facilitates the planning of educational actions within a common perspective: combining exceptional or vehicular BIM formats, establishing cross‐disciplinary synergies, and sharing resources, so as to purport a methodology that contributes to the assimilation of knowledge and pre‐defined competencies within the degree program, and to the flow of learning itself. At the same time, it reserves, even visually, those areas of knowledge in which the use of BIM processes is not considered necessarily an advantage over other methodologies, or even inadequate for the learning outcomes established, at least where current planning is concerned. It is this last category which characterizes the research conclusions as a whole, centering on: 1. The unquestionable need for teaching BIM concepts and processes in Architecture very early on, in the initial stages of higher education; 2. The additional educational benefits that BIM offers in a varied array of competency development within the academic curriculum; and 3. The specific nature of the professional role of the Architect, which demands a careful and balanced implementation of BIM that respects the traditional teaching methodologies that have proven effective and creative, and adds value by a symbiotic reorientation merged with parametric design and digital manufacturing so to enable for a finally generative design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building Information Modeling (BIM) concept is able to reshape each AEC project and the industry in general, offering a comprehensive collaboration process over a model of structure with regularly actualized and synchronized information. This report presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders through four case studies carried out during the internship in the engineering office NEWTON - Engineering Consultancy Company. The aim of the four cases studies was to cover multidisciplinary and varied projects. The first case study highlights the engineering project’s workflow and presents a comparison of traditional procedures and BIM concepts applied on the rehabilitation of an existing building. In the second and third case study, attention is focused on the goals achieved, particularly by structural engineer, due to the implementation of the mentioned technology on a full-lifecycle BIM project of a small residence and a complex project of residential building in Porto and on its architectural integration. In addition, through the fourth case study, the spatial coordination of Mechanical, Electrical and Plumbing (MEP) systems at a large-scale hotel project has been analyzed and accomplished, highlighting merits of BIM at this project stage. Through a reduction of the space used for facilities and infrastructures and the ability to identify conflicts and to nullify the related costs, its advantage for a complex building was proved.