998 resultados para BIFURCATION-ANALYSIS
Resumo:
We report in this paper the effect of temperature on the oscillatory electro-oxidation of methanol on polycrystalline platinum in aqueous sulfuric acid media. Potential oscillations were studied under galvanostatic control and at four temperatures ranging from 5 to 35 degrees C. For a given temperature, the departure from thermodynamic equilibrium does not affect the oscillation period and results in a slight increase of the oscillation amplitude. Apparent activation energies were also evaluated in voltammetric and chronoamperometric experiments and were compared to those obtained under oscillatory conditions. In any case, the apparent activation energies values fell into the region between 50 and 70 kJ mol(-1). Specifically under oscillatory conditions an apparent activation energy of 60 +/- 3 kJ mol(-1) and a temperature coefficient q(10) of about 2.3 were observed. The present findings extend our recently published report (J. Phys. Chem. A, 2008, 112, 4617) on the temperature effect on the oscillatory electro-oxidation of formic acid. We found that, despite the fact that both studies were carried out under similar conditions, unlike the case of formic acid, only conventional, Arrhenius, dynamics was observed for methanol.
Resumo:
Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.
Resumo:
We consider a fluid of hard boomerangs, each composed of two hard spherocylinders joined at their ends at an angle Psi. The resulting particle is nonconvex and biaxial. The occurence of nematic order in such a system has been investigated using Straley's theory, which is a simplificaton of Onsager's second-virial treatment of long hard rods, and by bifurcation analysis. The excluded volume of two hard boomerangs has been approximated by the sum of excluded volumes of pairs of constituent spherocylinders, and the angle-dependent second-virial coefficient has been replaced by a low-order interpolating function. At the so-called Landau point, Psi(Landau)approximate to 107.4 degrees, the fluid undergoes a continuous transition from the isotropic to a biaxial nematic (B) phase. For Psi not equal Psi(Landau) ordering is via a first-order transition into a rod-like uniaxial nematic phase (N(+)) if Psi > Psi(Landau), or a plate-like uniaxial nematic (N(-)) phase if Psi < Psi(Landau). The B phase is separated from the N(+) and N(-) phases by two lines of continuous transitions meeting at the Landau point. This topology of the phase diagram is in agreement with previous studies of spheroplatelets and biaxial ellipsoids. We have checked the accuracy of our theory by performing numerical calculations of the angle-dependent second virial coefficient, which yields Psi(Landau)approximate to 110 degrees for very long rods, and Psi(Landau)approximate to 90 degrees for short rods. In the latter case, the I-N transitions occur at unphysically high packing fractions, reflecting the inappropriateness of the second-virial approximation in this limit.
Resumo:
This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg's functions have a particular bifurcations structure: the big bang bifurcations of the so-called "box-within-a-box" type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.
Resumo:
We introduce a simple model for a biaxial nematic liquid crystal. This consists of hard spheroids that can switch shape between prolate (rodlike) and oblate (platelike) subject to an energy penalty Δε. The spheroids are approximated as hard Gaussian overlap particles and are treated at the level of Onsager's second-virial description. We use both bifurcation analysis and a numerical minimization of the free energy to show that, for additive particle shapes, (i) there is no stable biaxial phase even for Δε=0 (although there is a metastable biaxial phase in the same density range as the stable uniaxial phase) and (ii) the isotropic-to-nematic transition is into either one of two degenerate uniaxial phases, rod rich or plate rich. We confirm that even a small amount of shape nonadditivity may stabilize the biaxial nematic phase.
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The authors M. Bellamy and R.E. Mickens in the article "Hopf bifurcation analysis of the Lev Ginzburg equation" published in Journal of Sound and Vibration 308 (2007) 337-342, claimed that this differential equation in the plane can exhibit a limit cycle. Here we prove that the Lev Ginzburg differential equation has no limit cycles. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.