324 resultados para BEH-PPV
Resumo:
We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.
Resumo:
Two new light-emitting PPV-based copolymers bearing electron-withdrawing triazole unit in the main chain have been synthesized by Wittig reaction between triazole diphosphonium salt and the corresponding dialdehyde monomers, respectively. Their optical and physical properties are characterized by UV-vis, photoluminescence (PL), TGA and DSC. The resulting copolymers are highly soluble in common organic solvents and have high Tg and Td values. They show blue-greenish fluorescence in solution (lambda(max) 502 and 508 nm) and green fluorescence in the solid state (lambda(max) 520 and 526 nm), respectively.
Resumo:
Two PPV-based copolymers consisting siloxane linkage have been synthesized by melt condensation of bisphenol and dianilinodimethylsilane. The rigid PPV segments act as chromosphere and allow fine turning of band gap for blue-light emission, while the flexible siloxane units lead to the effective interruption of conjugation and the enhancement of solubility. The UV-vis absorption, photoluminescent and eletroluminescent properties have been studied.
Resumo:
A PPV derivative containing bulky tetraphenylmethane side chains was synthesised. Its optical properties were examined. Compared to its parent PPV polymer, its UV-Vis absorption and PL showed less red-shift from solution to film, its PL showed much less concentration quenching effect and higher efficiency, its EL device showed 9-fold enhanced efficiency. These improvements were attributed to weakened inter-chain interaction caused by the tetraphenylmethane group.
Resumo:
Two new poly(phenylenevinylene) (PPV) oligomers, 2,2'-(1,4-phenylenedivinylene)bis-8-acetoxy quinolines were synthesized via a Knoevenagel condensation reaction. The single-crystal X-ray diffraction study shows that there are intermolecular pi...pi interactions in the solid state of 2,2'(1,4-phenylenedivinylene)bis-8-acetoxyquinoline. Electroluminescent properties using these compounds as emitters have been investigated.
Resumo:
A novel alternating conjugated copolymer containing triazole and carbazole units was synthesized by the Wittig reaction. The resulting bipolar conjugated polymer emits a pure light with good thermal stability, which is a promising candidate for polymer light emitting display.
Resumo:
报道了一种共轭主链结构三苯胺PPV聚合物发光二极管,器件结构ITO/ploymer/Alq_3/Mg:Ag/Ag。在20V驱动电压下,最大亮度达到了1000cd/m~2
Resumo:
The lasing properties of a soluble conjugated polymer, Poly[1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene-1,2-phenylene-1,2-ethenylene-3,5-dimethoxy-1,4-phenylene] (CNMBC-Ph) in chloroform solution were investigated. The third harmonic radiation of a Nd:YAG laser was used as the pump light. The stimulated emission with a linewidth of 15 nm was observed in the blue wavelength region with the peak at 450 nm. The threshold pulse peak power was about 2.8 MW/cm(2). The energy conversion yield of the laser was estimated to be about 3.4%. The maximum peak power of the laser output pulse reached 40 kW. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Two new blue light-emitting PPV-based conjugated copolymers containing both an electron-withdrawing unit (triazole-TAZ) and electron-rich moieties (carbazole-CAR and bicarbazole-BCAR) were prepared by Wittig condensation polymerization between the triazole diphosphonium salt and the corresponding dialdehyde monomers. Their structures and properties were characterized by FT-IR, TGA, DSC, UV-Vis, PL spectroscopy and electrochemical measurements. The resulting copolymers are soluble in common organic solvents and thermally stable with a T-g of 147degreesC for TAZ-CAR-PPV and of 157degreesC for TAZ-BCAR-PPV. The maximum photoluminescence wavelengths of TAZ-CAR-PPV and TAZ-BCAR-PPV film appear at 460 nm and 480 nm, respectively. Cyclic voltammetry measurement demonstrates that TAZ-BCAR-PPV has good electrochemical reversibility, while TAZ-CAR-PPV exhibits the irreversible redox process. The triazole unit was found to be an effective pi-conjugation interrupter and can play the rigid spacer role in determining the emission colour of the resulting copolymer.
Resumo:
A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.
Resumo:
The PL and EL properties of the polymer blends of PVK and blue PPV copolymer were studied. Considerable enhancement of both the photoluminescent and the electroluminescent intensity were observed by using the polymer blends as emission layer in the LED devices. The energy transfer process and the formation of exciplex in the polymer blends were also discussed.
Resumo:
A series of novel PPV derivative copolymers with good solubility in common organic solvents were synthesized. The emitting color of these copolymers could range from red to blue by adjusting the structures and the compositions of monomers. Investigation on their optical properties showed that the PL quantum efficiency could be increased by energy transfer and conjugation reduction. The PL quantum efficiency of most green/blue copolymer films on slide glass was higher than 80%.
Resumo:
PPV是一种很好的电致发光材料,自从1990年首次报道PPV材料的电致发光现象以来,人们对PPV的改性做了很多的工作。如修饰PPV的侧链以改善其溶解性,达到调节其发光颜色的作用;引入电子传输基团以改善其电子、空穴注入平衡等。
Resumo:
Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ 3-fold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring anatomical characteristics of the soleus muscle, its fiber numbers and their cross sectional area (CSA), by analysing transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were 4-to-8 times larger compared to BEL strain. In sub-strain BEH+/+, mutant myostatin was replaced with a wild type allele, however, BEH+/+muscles still were 2-to-4 times larger compared to the BEL strain. BEH soleus contained 2-times more (P<0.0001) and 2-times larger in CSA (P<0.0001) fibers compared to BEL strain. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (chromosome 1) and four suggestive (chromosomes 3, 4, 6 and 9) muscle weight QTLs were mapped in 21-day old F2 intercross (n=296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL, however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed (P<0.1) genes and 45,673 SNPs and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits, genomic and gene expression differences between BEH and BEL strains provide a promising model for the search of genes involved in muscle growth and musculoskeletal morphogenesis.
Resumo:
Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.