971 resultados para BEB electron impact ionization cross section
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.
Resumo:
Cross sections for charge transfer reactions of organic ions containing oxygen have been obtained using time-of-flight techniques. Charge transfer cross sections have been determined for reactions of 2.0 to 3.4 keV ions produced by electron impact ionization of oxygen containing molecules such as methanol, ethanal and ethanol. Experimental cross section magnitudes have been correlated with reaction energy defects computed from ion recombination energies and target ionization energies. Large cross sections are observed for reacting systems with small energy defects.
Resumo:
The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ⟩ϕ=1.11±0.10(stat)±0.18(syst)×10−38 cm2/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10−38 cm2/nucleon and the GENIE prediction is 1.08×10−38 cm2/nucleon. The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.
Resumo:
Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.
Resumo:
Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = 0.86(-0.14)(+0.30) and Ae(L)(e-) = 0.88(-0.71)(+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p + p collisions at a center-of-mass energy of root s = 500 GeV with the PHENIX detector at RHIC. These e(+/-) come mainly from the decay of W(+/-) and Z(0) bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W(+/-) to the light quarks. The observed electron and positron yields were used to estimate W(+/-) boson production cross sections for the e(+/-) channels of sigma(pp -> W(+)X) X BR(W(+) -> e(+) nu(e)) = 144.1 +/- 21.2(stat)(-10.3)(+3.4)(syst) +/- 21.6(norm) pb, and sigma(pp -> W(-)X) X BR(W(-) -> e(-) (nu) over bar (e)) = 3.17 +/- 12.1(stat)(-8.2)(+10.1)(syst) +/- 4.8(norm) pb.
Resumo:
The nuclear gross theory, originally formulated by Takahashi and Yamada (1969 Prog. Theor. Phys. 41 1470) for the beta-decay, is applied to the electronic-neutrino nucleus reactions, employing a more realistic description of the energetics of the Gamow-Teller resonances. The model parameters are gauged from the most recent experimental data, both for beta(-)-decay and electron capture, separately for even-even, even-odd, odd-odd and odd-even nuclei. The numerical estimates for neutrino-nucleus cross-sections agree fairly well with previous evaluations done within the framework of microscopic models. The formalism presented here can be extended to the heavy nuclei mass region, where weak processes are quite relevant, which is of astrophysical interest because of its applications in supernova explosive nucleosynthesis.
Resumo:
A search is performed for top-quark pairs (tt¯) produced together with a photon (γ) with transverse momentum >20 GeV using a sample of tt¯ candidate events in final states with jets, missing transverse momentum, and one isolated electron or muon. The dataset used corresponds to an integrated luminosity of 4.59 fb−1 of proton--proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. In total 140 and 222 tt¯γ candidate events are observed in the electron and muon channels, to be compared to the expectation of 79±26 and 120±39 non-tt¯γ background events respectively. The production of tt¯γ events is observed with a significance of 5.3 standard deviations away from the null hypothesis. The tt¯γ production cross section times the branching ratio (BR) of the single-lepton decay channel is measured in a fiducial kinematic region within the ATLAS acceptance. The measured value is σfidtt¯γ=63±8(stat.)+17−13(syst.)±1(lumi.) fb per lepton flavor, in good agreement with the leading-order theoretical calculation normalized to the next-to-leading-order theoretical prediction of 48±10 fb.
Resumo:
It was found that the non-perturbative corrections calculated using Pythia with the Perugia 2011 tune did not include the effect of the underlying event. The affected correction factors were recomputed using the Pythia 6.427 generator. These corrections are applied as baseline to the NLO pQCD calculations and thus the central values of the theoretical predictions have changed by a few percent with the new corrections. This has a minor impact on the agreement between the data and the theoretical predictions. Figures 2 and 6 to 13, and all the tables have been updated with the new values. A few sentences in the discussion in sections 5.2 and 9 were altered or removed.
Resumo:
Dissertação de mestrado em Finanças
Resumo:
The fragmentation patterns and mass spectra of some phenyl tin and -lead halide adducts with hexamethylphosphoramide are compared by subjecting them t~ electron impact and fast atom bombardment ionization in a mass spectrometer. This comparison is restricted to the metal-containing ions. Ligand-exchange mechanisms of some of the metal-containing species are explored by FAB-MS. Several moisturesensitive organo-metallics and H-bonded systems have been examined by FAB for attempted characterization, but without any success. Scavenging and trapping of water molecules by complex aggregates in solutions of quaternary ammonium fluorides and hydroxides are investigated by FAB to complement previous NMR-studies.
Resumo:
We use a factor-augmented vector autoregression (FAVAR) to estimate the impact of monetary policy shocks on the cross-section of stock returns. Our FAVAR combines unobserved factors extracted from a large set of nancial and macroeconomic indicators with the Federal Funds rate. We nd that monetary policy shocks have heterogeneous e ects on the crosssection of stock returns. These e ects are very well explained by the degree of external nance dependence, as well as by other sectoral characteristics.
Resumo:
We present a measurement of the top quark pair production cross section in p (p) over bar collisions at root s=1.96 TeV utilizing 425 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-p(T) electron or muon and at least four jets. We exploit specific kinematic features of t (t) over bar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma(t (t) over bar)=6.4(-1.2)(+1.3)(stat)+/- 0.7(syst)+/- 0.4(lum) pb, in good agreement with the standard model prediction.
Resumo:
We present a measurement of the top quark pair (t (t) over bar) production cross section (sigma(t (t) over bar)) in pp collisions at root s = 1.96 TeV using 230 pb(-1) of data collected by the DO experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the t F purity of the selected sample. For a top quark mass of 175 GeV, we measure sigma(t (t) over bar) 8.6(-1.5)(+1.6) (stat. + syst.) +/- 0.6(lumi.) pb, in agreement with the standard model expectation. (c) 2005 Published by Elsevier B.V.
Resumo:
We present a measurement of the top quark pair (t (t) over bar) production cross section (sigma(t (t) over bar)) in pp collisions at a center-of-mass energy of 1.96 TeV using 230 pb(-1) of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the t (t) over bar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(t (t) over bar) 6.7(-1.3)(+1.4)(stat)(-1.1)(+1.6)(syst) +/- 0.4(lumi) pb, in good agreement with the standard model prediction. (c) 2005 Elsevier B.V. All rights reserved.