993 resultados para BACKCROSS-DERIVED LINES
Resumo:
Transgenic Citrus sinensis (L.) Osb. plants, cvs. Valencia and Hamlin, expressing Citrus tristeza virus (CTV) derived sequences were obtained by genetic transformation. The gene constructs were pCTV-CP containing the 25 kDa major capsid protein gene (CTV-CP), pCTV-dsCP containing the same CTV-CP gene in an intron-spliced hairpin construct, and pCTV-CS containing a 559 nt conserved region of the CTV genome. The transgenic lines were identified by PCR and the transgene integration was confirmed by Southern blot. Transgene mRNA could be detected in most transgenic lines containing pCTV-CP or pCTV-CS transgene. The mRNA of pCTV-dsCP transgene was almost undetectable, with very light bands in most analyzed plants. The transgene transcription appears to be closely linked to the type of gene construct. The virus challenge assays reveals that all transgenic lines were infected. However, it was possible to identify propagated clones of transgenic plants of both cultivars studied with a low virus titer, with values similar to the non-inoculated plants (negative control). These results suggested that the transgenic plants present some level of resistance to virus replication. The higher number of clones with low virus titer and where mRNA could not be detected or was presented in a very light band was found for pCTV-dsCP-derived transgenic lines.
Resumo:
BACKGROUND The soluble factors secreted by mesenchymal stem cells are thought to either support or inhibit tumor growth. Herein, we investigated whether the human lung-derived mesenchymal stem cell-conditioned medium (hlMSC-CM) exerts antitumor activity in malignant pleural mesothelioma cell lines H28, H2052 and Meso4. METHODS hlMSC-CM was collected from the human lung-derived mesenchymal stem cells. Inhibition of tumor cell growth was based on the reduction of cell viability and inhibition of cell proliferation using the XTT and BrdU assays, respectively. Elimination of tumor spheroids was assessed by the anchorage-independent sphere formation assay. The cytokine profile of hlMSC-CM was determined by a chemiluminescence-based cytokine array. RESULTS Our data showed that hlMSC-CM contains a broad range of soluble factors which include: cytokines, chemokines, hormones, growth and angiogenic factors, matrix metalloproteinases, metalloproteinase inhibitors and cell-cell mediator proteins. The 48- and 72-hour hlMSC-CM treatments of H28, H2052 and Meso4 cell lines elicited significant decreases in cell viability and inhibited cell proliferation. The 72-hour hlMSC-CM incubation of H28 cells completely eliminated the drug-resistant sphere-forming cells, which is more potent than twice the half maximal inhibitory concentration of cisplatin. CONCLUSIONS Our findings indicate that the cell-free hlMSC-CM confers in vitro antitumor activities via soluble factors in the tested mesothelioma cells and, hence, may serve as a therapeutic tool to augment the current treatment strategies in malignant pleural mesothelioma.
Resumo:
Radiation is the primary modality of therapy for all commonly occurring malignant brain tumors, including medulloblastoma and glioblastoma. These two brain tumors, however, have a distinctly different response to radiation therapy. Medulloblastoma is very sensitive to radiation therapy, whereas glioblastoma is highly resistant, and the long-term survival of medulloblastoma patients exceeds 50%, while there are few long-term survivors among glioblastoma patients. p53-mediated apoptosis is thought to be an important mechanism mediating the cytotoxic response of tumors to radiotherapy. In this study, we compared the response to radiation of five cell lines that have wild-type p53: three derived from glioblastoma and two derived from medulloblastoma. We found that the medulloblastoma-derived cell lines underwent extensive radiation-induced apoptotic cell death, while those from glioblastomas did not exhibit significant radiation-induced apoptosis. p53-mediated induction of p21BAX is thought to be a key component of the pathway mediating apoptosis after the exposure of cells to cytotoxins, and the expression of mRNA encoding p21BAX was correlated with these cell lines undergoing radiation-induced apoptosis. The failure of p53 to induce p21BAX expression in glioblastoma-derived cell lines is likely to be of biologic significance, since inhibition of p21BAX induction in medulloblastoma resulted in a loss of radiation-induced apoptosis, while forced expression of p21BAX in glioblastoma was sufficient to induce apoptosis. The failure of p53 to induce p21BAX in glioblastoma-derived cell lines suggests a distinct mechanism of radioresistance and may represent a critical factor in determining therapeutic responsiveness to radiation in glioblastomas.
Resumo:
The T-cell receptor (TCR) beta chain is instrumental in the progression of thymocyte differentiation from the CD4-CD8- to the CD4+CD8+ stage. This differentiation step may involve cell surface expression of novel CD3-TCR complexes. To facilitate biochemical characterization of these complexes, we established cell lines from thymic lymphomas originating from mice carrying a mutation in the p53 gene on the one hand and a mutation in TCR-alpha, TCR-beta, or the recombination activating gene 1 (RAG-1) on the other hand. The cell lines were CD4+CD8+ and appeared to be monoclonal. A cell line derived from a RAG-1 x p53 double mutant thymic lymphoma expressed low levels of CD3-epsilon, -gamma, and -delta on the surface. TCR-alpha x p53 double mutant cell lines were found to express complexes consisting of TCR-beta chains associated with CD3-epsilon, -gamma, and -delta chains and CD3-zeta zeta dimers. These lines will be useful tools to study the molecular structure and signal transducing properties of partial CD3-TCR complexes expressed on the surface of immature thymocytes.
Resumo:
Thyristor-based onload tap-changing ac voltage stabilizers are cheap and robust. They have replaced most mechanical tap-changers in low voltage applications from 300 VA to 300 M. Nevertheless, this replacement hardily applies to tap-changers associated to transformers feeding medium-voltage lines (typically 69 kV primary, 34.5 kV line, 10 MVA) which need periodical maintenance of contacts and oil. The Electric Power Research Institute (EPRI) has studied the feasibility of this replacement. It detected economical problems derived from the need for series association of thyristors to manage the high voltages involved, and from the current overload developed under line fault. The paper reviews the configurations used in that field and proposes new solutions, using a compensating transformer in the main circuit and multi-winding coils in the commutating circuit, with reduced overload effect and no series association of thyristors, drastically decreasing their number and rating. The stabilizer can be installed at any point of the line and the electronic circuit can be fixed to ground. Subsequent works study and synthesize several commutating circuits in detail.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)S) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M-r similar to 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2S from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)S, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA(2)S induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The present work evaluates both in vitro and in vivo antitumor activity of BPB-modified BthTX-I and its cationic synthetic peptide derived from the 115-129 C-terminal region. BPB-BthTX-1 presented cytotoxicity of 10-40% on different tumor cell lines, which were also susceptible to the lytic action of the synthetic peptide. Injection of the modified protein or the peptide in mice, 5 days after transplantation of S 180 tumor cells, reduced 30 and 36% of the tumor size on day 14th and 76 and 79% on day 60th, respectively, when compared to the untreated control group. Thus, these antitumor properties might be of interest in the development of therapeutic strategies against cancer. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
One of the main obstacles for understanding biological events involved in cancer is the lack of experimental models for in vitro studies especially for prostate cancer (PC).There are a limited number of PC cell lines being the majority originated from metastatic tumors mostly acquired from American Tissue Cell Culture which demands importation an expensive and bureaucratic process. Also it is well known that there are ethnic differences between populations concerning the behavior of tumors and the research based on cell lines derived from Brazilians should be interesting. Our aim was to develop tumor cell lines from primary PC.
Resumo:
Bladder cancer (BC) is the fourth most common cancer in the USA. In Brazil, BC represents 3% of the total existing carcinomas in the population and represents the second highest incidence among urological tumors. The majority of bladder cancer cell lines available were derived from Caucasians and established in the seventies or eighties. Thus, neoplasia development in these cells likely occurred in environment conditions vastly different than today. In the present study, we report the establishment and characterization of three Brazilian bladder cancer cell lines (BexBra1, BexBra2, and BexBra4). These cell lines may be helpful for dissecting the genetic and epigenetic aspects that trigger the progression of BC. Moreover, the development of a Brazilian representative of the disease will allow us to investigate the potential inter-racial differences of malignancy-associated phenotypes in bladder cancer.
Resumo:
The role of the mast cell-specific gangliosides in the modulation of the endocytic pathway of Fc epsilon RI was investigated in RBL-2H3 cells and in the ganglioside-deficient cell lines, E5 and D1. MAb BC4, which binds to the alpha subunit of Fc epsilon RI, was used in the analysis of receptor internalization. After incubation with BC4-FITC for 30 min, endocytic vesicles in RBL-2H3 and E5 cells were dispersed in the cytoplasm. After 1 hr, the endocytic vesicles of the RBL-2H3 cells had fused and formed clusters, whereas in the E5 cells, the fusion was slower. In contrast, in D1 cells, the endocytic vesicles were smaller and remained close to the plasma membrane even after 3 hr of incubation. When incubated with BC4-FITC and subsequently imunolabeled for markers of various endocytic compartments, a defect in the endocytic pathway in the E5 and D1 cells became evident. In the D1 cells, this defect was observed at the initial steps of endocytosis. Therefore, the ganglioside derivatives from GD1b are important in the endocytosis of Fc epsilon RI in mast cells. Because gangliosides may play a role in mast cell-related disease processes, they provide an attractive target for drug therapy and diagnosis. (J Histochem Cytochem 59:428-440, 2011)
Resumo:
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
Resumo:
The overexpression of cyclooxygenase (COX)-2 is a frequent event in squamous cell carcinomas of the head and neck (HNSCC), and non-steroidal anti-inflammatory drugs, which are potent inhibitors of COX-1 and COX-2, exert chemopreventive effects on HNSCC cancer development. COX-2 promotes the release of the pro-inflammatory mediator prostaglandin E2 (PGE2), which acts on its cell surface G protein-coupled receptors EP1, EP2, EP3, and EP4. Here, we investigated the role of PGE2 and its receptors in cellular proliferation in HNSCC. The expression of COX-2 and EP1-4 was examined in immortalized oral epithelial cells and in a representative panel of HNSCC cell lines, and based on these data EP1-EP3 and COX-2 expression were evaluated by immunohistochemistry in a large clinical sample collection using HNSCC tissue microarrays. The ability of selective COX-2 inhibition to block PGE2 secretion was measured by ELISA specific assays. The effects of PGE2 on cell proliferation were evaluated using PGE2, its stable analog, and EP2 and EP3-specific synthetic agonists. The results presented here show that HNSCC tumoral lesions and their derived cell lines constitutively express COX-2 and the EP1, EP2 and EP3 receptors for PGE2. HNSCC cells secrete PGE2, which can be suppressed by low concentrations of COX-2 selective inhibitors, without inhibiting cell proliferation. Exogenously added stable PGE2 and EP3-specific agonists induce DNA synthesis in all HNSCC cell lines tested. Overall, our study supports the emerging notion that PGE2 produced in the tumor microenvironment by the overexpression of COX-2 in tumoral and inflammatory cells may promote the growth of HNSCC cells in an autocrine and paracrine fashion by acting on PGE2 receptors that are widely expressed in most HNSCC cancer cells. In particular, our findings suggest that EP3 receptor may play a more prominent role in HNSCC cell growth promotion, thus providing a rationale for the future evaluation of this PGE2 receptor as a target for HNSCC prevention strategies. Published by Elsevier Ltd.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.