509 resultados para B16
Resumo:
A vascularização tem um papel central na progressão tumoral e representa um alvo terapêutico de grande interesse. A inibição da angiogênese tem potencial de retardar a progressão tumoral e inibir metástase. Em decorrência disto, terapias anti-angiogênicas têm demonstrado ser promissora no controle do crescimento tumoral. Segundo a literatura, interferon-? (IFN?, ativador do sistema imune inato e adaptativo) e p19Arf (supressor de tumor e parceiro funcional de p53), quando estudados individualmente, alteram a vasculatura tumoral. Nosso grupo construiu e utilizou vetores adenovirais recombinantes portadores dos cDNAs de INFbeta e p19Arf e observou que a transferência desta combinação de genes induziu morte celular e diminuiu progressão tumoral, resultados foram observados em modelos murinos de melanoma B16 de terapia genica in situ, vacina profilática e vacina terapêutica. Neste trabalho, exploramos a ideia que a combinação dos vetores adenovirais portadores de INFbeta e p19Arf proporcionam efeitos anti-angiogênicos através de seu impacto em células endoteliais. Para averiguarmos essa hipótese, células endoteliais murinas (tEnd) foram transduzidas com os vetores adenovirais, revelando que o vetor Ad-p19 confere inibição da proliferação, formação de tubos, migração e induz aumento na expressão de genes relacionados a via de p53 e morte celular. O vetor Ad-IFNbeta sozinho ou adicionado em combinação com Ad-p19, não teve impacto significante nestes ensaios. Alternativamente, a influencia indireta, ou parácrina, nas células tEnd cultivadas juntamente com as células B16 transduzidas com os vetores adenovirais também foi investigada. Quando as células B16 foram transduzidas com Ad-IFNbeta ou a co-transdução Ad-IFNbeta+Ad-p19 em co-cultura com a linhagem tEnd, houve inibição da proliferação. Não observamos efeito inibitório na tEnd da co-cultura quando as células da B16 foram transduzidas somente com Ad-p19. Seguindo o ensaio de co-cultura, produzimos meio condicionado da B16 transduzida com os vetores e aplicamos esses meios nas células tEnd. Observamos que Ad-IFN, sozinho ou em combinação com Ad-19, diminuiu a viabilidade, proliferação e levou a morte das células tEnd. Neste trabalho, constamos que inibição de células endoteliais pode ser realizada por transdução direta com Ad-19 ou quando estas células são expostas ao ambiente modulado por células tumorais transduzidas com o vetor Ad-IFNbeta. Mesmo que a transferência gênica de ambos IFNbeta e p19Arf não demonstrou ser uma abordagem superior à aplicação dos genes isolados, observamos que nossa abordagem pode ter um impacto importante na inibição da angiogênese pelas células endoteliais
Resumo:
Molecular imaging is utilised in modern medicine to aid in the diagnosis and treatment of disease by allowing its spatiotemporal state to be examined in vivo. This study focuses on the development of novel multimodal molecular imaging agents based on hyperbranched polymers that combine the complementary capabilities of optical fluorescence imaging and positron emission tomography-computed tomography (PET/CT) into one construct. RAFT-mediated polymerisation was used to prepare two hydrophilic hyperbranched polymers that were differentiated by their size and level of branching. The multiple functional end-groups facilitated covalent attachment of both near infrared fluorescent dyes for optical imaging, as well as a copper chelator allowing binding of 64Cu as a PET radio nuclei. In vivo multimodal imaging of mice using PET/CT and planar optical imaging was first used to assess the biodistribution of the polymeric materials and it was shown that the larger and more branched polymer had a significantly longer circulation time. The larger constructs were also shown to exhibit enhanced accumulation in solid tumours in a murine B16 melanoma model. Importantly, it was demonstrated that the PET modality gave rise to high sensitivity immediately after injection of the agent, while the optical modality facilitated extended longitudinal studies, thus highlighting how the complementary capabilities of the molecular imaging agents can be useful for studying various diseases, including cancer.
Resumo:
Understanding the complex nature of diseased tissue in vivo requires development of more advanced nanomedicines, where synthesis of multifunctional polymers combines imaging multimodality with a biocompatible, tunable, and functional nanomaterial carrier. Here we describe the development of polymeric nanoparticles for multimodal imaging of disease states in vivo. The nanoparticle design utilizes the abundant functionality and tunable physicochemical properties of synthetically robust polymeric systems to facilitate targeted imaging of tumors in mice. For the first time, high-resolution 19F/1H magnetic resonance imaging is combined with sensitive and versatile fluorescence imaging in a polymeric material for in vivo detection of tumors. We highlight how control over the chemistry during synthesis allows manipulation of nanoparticle size and function and can lead to very high targeting efficiency to B16 melanoma cells, both in vitro and in vivo. Importantly, the combination of imaging modalities within a polymeric nanoparticle provides information on the tumor mass across various size scales in vivo, from millimeters down to tens of micrometers.
Resumo:
Modulation of the immune response is an important step in the induction of protective humoral and cellular immunity against pathogens. In this study, we investigated the possibility of using a nanomaterial conjugated with the toll-like receptor (TLR) ligand CpG to modulate the immune response towards the preferred polarity. MgAl-layered double hydroxide (LDH) nanomaterial has a very similar chemical composition to Alum, an FDA approved adjuvant for human vaccination. We used a model antigen, ovalbumin (OVA) to demonstrate that MgAl-LDH had comparable adjuvant activity to Alum, but much weaker inflammation. Conjugation of TLR9 ligand CpG to LDH nanoparticles significantly enhanced the antibody response and promoted a switch from Th2 toward Th1 response, demonstrated by a change in the IgG2a:IgG1 ratio. Moreover, immunization of mice with CpG-OVA-conjugated LDH before challenge with OVA-expressing B16/F10 tumor cells retarded tumor growth. Together, these data indicate that LDH nanomaterial can be used as an immune adjuvant to promote Th1 or Th2 dominant immune responses suitable for vaccination purposes.
Resumo:
When working with functions in Excel you can reference a range of cells by simply selecting the cells. For instance if you wanted to sum all your first month sales located in the range B3:B16, the function would be =SUM(B3:B16).
Resumo:
The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.
Resumo:
The screen printed electrochemical glucose sensor is developed suitable for revere iontophoresis (RI) application. Glucose oxidase is immobilized on screen printed sensor using crosslinking method. Electrochemical and material characterization studies are conducted on the developed sensor and the obtained results confirm the suitability of the developed sensor for RI application. The developed sensor is validated by conducting clinical investigations on 10 human subjects through RI. A correlation is established between the blood glucose and extracted glucose, and correlation is found to be 0.73. (C) 2015 The Electrochemical Society. All rights reserved.
Resumo:
Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing
Resumo:
油菜素甾醇类(Brassinosteroids,BRs)是一类新的植物内源激素,在植物整个生长发育周期中发挥着很重要的作用。拟南芥中BR信号转导途径基本清晰,从膜受体BRI1到细胞质中的负调控因子BIN2,再到核内的转录因子BZR1和BES1。但是从BR信号感知到细胞质内的传递,再到细胞核内的调控特异基因的表达都还有很多问题有待于进一步的探索。 本研究运用激活标签pDSK15-11对大约5000株拟南芥bzr1-1D进行了转化, 得到抗性植株约50000株,构建了一个拟南芥激活标签突变体库,从中筛选到和BR相关的突变体七个,并对其中的B26和B16突变体进行了详细的分析。此外还筛选到若干个和BR没有关系的突变体,并对其中的一个表皮毛缺陷的突变体B11进行了分析。 B26是一株恢复了bzr1-1D茎叶处打弯表型的突变体,并且具有矮化、叶色深绿、晚花等特点。B26部分抑制了bzr1-1D对BR合成抑制剂BRZ的不敏感性,但仍然对BR超敏感。BR上调的基因SAUR-AC1在bzr1-1D中表达上升,而在B26突变体中SAUR-AC1的表达量比bzr1-1D中有所下降。B26突变体显示的表型是依赖于bzr1-1D突变的。我们通过T-DNA侧翼序列,RT-PCR,以及重现实验证实造成突变表型的基因,并命名为BZS1。BZS1编码一个B类锌指蛋白,在植物发育的各个时期各个器官中都有表达。亚细胞定位分析显示BZS1定位于细胞质和细胞核中,以上这些结果说明BZS1可能在BR信号途径中是位于BZR1的下游,作为一个负的调节因子调控下游BR反应基因的表达。 B16是从突变体库中筛选得到的一个叶柄明显增长,营养生长期延长,开花晚,结实率比较低的突变体。T-DNA侧翼序列和基因表达分析显示B16突变体中T-DNA插入点附近的一个基因表达量升高,这一基因被命名为BZE1。BZE1编码一个含有bHLH结构域的蛋白。BZE1 RNAi转基因植株的叶柄比对照明显变短,说明BZE1调控叶柄的伸长。在B16突变体中,CPD和DWF4的表达较bzr1-1D中增强了,而SAUR-AC1的表达减弱了,这一结果说明BZE1过表达减弱了BZR1对CPD的反馈抑制。Pro35S:BZE1 /bzr1-1D转基因植株对BRZ的敏感度与bzr1-1D相似。BR不调节BZE1的转录水平,却可以促进BZE1蛋白在核内积累。这些结果都说明BR处理不改变BZE1的转录水平,只是通过促进BZE1在核内的积累增加,从而参与调控下游基因的表达,如CPD。随着这些突变体研究的进一步深入,将有助于我们更好的理解BR信号转导途径。 B11是一个叶片(包括莲座叶和茎生叶)和茎表皮毛缺失,但根毛发育正常的突变体,T-DNA侧翼序列和基因表达分析显示B11突变体表型是由于ETL1的过量表达造成的。ETL1可能是一个表皮毛特异表达的基因,对根毛的发育影响不大。功能缺失突变体etl1-1和野生型拟南芥具有相似的表皮毛数量和分布,根毛的数量和分布也没有明显的变化,这就说明ETL1可能与其他同源基因功能冗余。ETL1在gl1中表达量增加,由此推测ETL1在表皮毛的发育中可能起负调控的作用。
Resumo:
利用电喷雾串联质谱(ESI-MSn)系统地研究了乌头属植物和中药煎煮液中的乌头碱型生物碱的质谱行为。实验表明,ESI-MSn不仅是一种灵敏的药用植物中乌头生物碱的分析方法,也是研究中药配伍规律和阐释中药复方合理内涵的有效工具。低能诱导碰撞解离肠导下,具有乌头碱骨架类型的生物碱断裂规律相似:丢失C8乙酰基或长链脂肪酰基是它们在MSZ中的特征断裂,在MS3和MS4中丢失1-4CH3OH,1-3H2O,CO,BzOH,CH3(N)或C2H5(N)是其他所有可能的断裂方式,并且结构的微小差别也能在串联质谱中得到反映。利用这些规律分析了生附子、生草乌、生草乌花、生白山草乌和制雪上一支蒿中的生物碱,我们不仅发现所有已知的化合物,还部分表征了50余种新化合物,其中具有15C,17C,19C和ZOC饱和或不饱和脂肪酰基,以10-OH-中乌头碱和10-OH-乌头碱为骨架的脂碱以及三脂型脂碱为首次在乌头属植物中发现。该结果提出了脂类生物碱在乌头属植物中普遍存在的可能性。另一方面,我们发现中药煎煮液具有缓冲溶液的性质,酸性和糖是影响剧毒性双酯型生物碱水解的两个因素。在pH5.0-5.5和糖的存在下,大部分双酯型生物碱水解为苯甲酰单酯型生物碱,少部分被转为脂碱,在pH2.8到3.5之间(半夏等与附子禁用中药煎煮液的pH),双酯型生物碱十分稳定,既不水解,也不转为脂碱。这样,我们不仅解释了传统中医药配伍理论的合理内涵,也表明她可能.存在着不足。此外,脂碱难溶于水,大部分脂碱煎煮后仍残留在药材组织中。最后,为评价脂碱的抗癌效果,我们用在水相下合成了8-棕榈酰-苯甲酰乌头原碱,体外实验表明,0.001mg/ml的8-棕榈酰-苯甲酰乌头原碱对肝癌细胞SMMC-7721和黑色素瘤细胞B16即具有很强的杀伤作用,并且提示它们可能具有不同的作用机制。
Resumo:
蛇毒去整合素蛋白(disintegrin)家族一般具有分子量低、富含半胧氨酸和含有RGD三肽等结构特点,因其能与配基竞争结合细胞表面的整合素受体,干扰整合素的正常功能而呈现出多方面的生物学活性,如抑制血小板聚集、抑制肿瘤转移和诱导细胞凋亡等。本论文用凝胶过滤、反向高压液相等层析技术从我国云南产菜花烙铁头(Trimeresurusjerdonii)蛇毒中分离纯化到两个新的去整合素蛋白,分别命名为jerdonin和Jerdonatin。MALDI-TOF-MS测定jerdonin分子量为7483Da,jerdonatin分子量为80llDa,二者均属第二类去整合素。分别测定了其N末端25个氨基酸序列,发现与其它蛇毒来源的去整合素具有很高的相似性。提取菜花烙铁头毒腺总mRNA,通过反转录PCR(RT-PCR)扩增到两个去整合素cDNA序列,分别命名为TJDIS-1和TJDIS-2。TJDIS-1全长1528bp,TJDIS-2全长16O3bp,二者均包含编码信号肚区、前肤区、金属蛋白酶区、间隔肤区和去整合素区一属于P一H型金属蛋白酶家族。经推导的氨基酸序列和MALDI一TOF一MS分析,可确定TJDIS-1去整合素区编码jerdonin,TJDIS-2去整合素区编码jerdonotin。jerdonin全长71个氨基酸,jerdonatin全长72个氨基酸,二者均含12个半眺氨酸,且在C末端附近均含有去整合素家族的典型特征三肤序列一RGD。氨基酸序列比较分析显示,jerdon加与来源于侏响尾蛇(Sistrurusm.tergeminus)的去整合素tergeminin序列相似性最高,为82.2%。而jertionatin与来源于黄绿烙铁头(Trimeresurusflavoviridis)的去整合素CTF-I序列相似性最高,为97.2%,仅在RGD附近有两个氨基酸不同。jerdonin与jerdonatin序列相似性为67.6%。本论文还研究了jedonin和jerdonatin的生物学活性。二者均能强烈抑制ADP、胶原、凝血酶诱导的人血小板的聚集,IC50为100-300nM。jerdonin和jerdonatin还能够抑制B16肿瘤细胞增生,研究表明,jerdonin不仅能显著抑制肿块的生长,还能延长荷瘤小鼠的寿命。平均肿块体积由对照的5260.33枷,降低至2086.65mm3,小鼠平均寿命由对照的24.8天延长至30.5天,提高了22.98%。本论文也研究了jerdonin和jedonatin对小鼠精卵受精过程的影响,结果表明jordonotin能够呈剂量关系抑制精卵结合,但对精卵融合无影响。当jerdonatin用量为10.0μg/毗时,单个卵子的精子结合数由对照的95.31降为21.83。菜花烙铁头蛇毒去整合素蛋白的结构和活性鉴定,为去整合素家族的生物多样性研究提供了丰富的素材,同时也为血栓、肿瘤、生殖等生理或病理过程的研究提供了一个有力的工具。
Resumo:
探讨12C6+离子束辐射对用带有绿色荧光蛋白基因的缺陷性腺病毒(AdCMV-GFP)转染小鼠黑色素瘤细胞(B16细胞系)的影响。采用不同剂量的12C6+重离子束辐射经AdCMV-GFP转染的B16细胞,利用流式细胞仪检测腺病毒的转染率。结果表明,12C6+重离子束辐射能提高腺病毒对B16细胞的转染率,且具有量效关系。此外,先转染后辐射法比起先辐射后转染法能更显著地提高转染率。
Resumo:
利用γ射线和不同LET的碳离子辐照小鼠B16黑色素瘤细胞的脱蛋白DNA ,采用脉冲场凝胶电泳结合荧光扫描技术研究了DNA双链断裂 (DSB)与LET之间的关系。结果表明 :不同LET重离子诱导的PR都随剂量的增加而增加 ,并在超过一定的剂量之后逐渐趋于一个准阈值 :而不同LET的重离子诱导的L值都与剂量呈线性关系 ;对于诱导DSB的RBE值则随着LET的增加先呈上升趋势 ,在LET超过 10 0ke μm后下降。
Resumo:
利用不同剂量率的 5 0MeV/u12C6+ 辐照B16黑色素瘤细胞的脱蛋白DNA ,采用脉冲场凝胶电泳技术对DNA双链断裂 (DSB)的诱导和片段的分布进行了研究。结果发现 ,在剂量率分别为3Gy/min和 30Gy/min的情况下 ,DNA片段释放百分比 (PR)都随着剂量的增加而增加 ,并在超过一定剂量之后趋于相似的准阈值 ;3Gy/min辐照诱导DSB的产额为 0 .4 0DSBs/ (10 0Mbp .Gy) ,30Gy/min辐照诱导的DSB产额准确值无法得到 ;30Gy/min辐照诱导DSB的截面为 2 .14μm2 ,是 3Gy/min的 3.1倍。所有结果都表明剂量率越高 ,诱导DSB越有效。另外 ,3Gy/min辐照诱导DSB片段在 -86 0kbp处有一个片段峰 ,而 30Gy/min没有 ,说明剂量率可以影响DSB片段的分布。