982 resultados para B-WAVE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. To examine the effects of transcorneal electrical stimulation (TES) on retinal degeneration of light-exposed rats. METHODS. Thirty-three Sprague Dawley albino rats were divided into three groups: STIM (n = 15) received 60 minutes of TES, whereas SHAM (n = 15) received identical sham stimulation 2 hours before exposure to bright light with 16,000 lux; healthy animals (n = 3) served as controls for histology. At baseline and weekly for 3 consecutive weeks, dark-and light-adapted electroretinography was used to assess retinal function. Analysis of the response versus luminance function retrieved the parameters Vmax (saturation amplitude) and k (luminance to reach 1/2Vmax). Retinal morphology was assessed by histology (hematoxylin-eosin [HE] staining; TUNEL assay) and immunohistochemistry (rhodopsin staining). RESULTS. Vmax was higher in the STIM group compared with SHAM 1 week after light damage (mean intra-individual difference between groups 116.06 mu V; P = 0.046). The b-wave implicit time for the rod response (0.01 cd.s/m(2)) was lower in the STIM group compared with the SHAM group 2 weeks after light damage (mean intra-individual difference between groups 5.78 ms; P = 0.023); no other significant differences were found. Histological analyses showed photoreceptor cell death (TUNEL and HE) in SHAM, most pronounced in the superior hemiretina. STIM showed complete outer nuclear layer thickness preservation, reduced photoreceptor cell death, and preserved outer segment length compared with SHAM (HE and rhodopsin). CONCLUSIONS. This sham-controlled study shows that TES can protect retinal cells against mild light-induced degeneration in Sprague Dawley rats. These findings could help to establish TES as a treatment in human forms of retinal degenerative disease. (Invest Ophthalmol Vis Sci. 2012;53:5552-5561) DOI: 10.1167/iovs.12-10037

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: An age-controlled comparison concerning patient satisfaction and electrical performance of microfibres (DTL) and rigid contact lens (Henkes) corneal ERG electrodes was carried out. METHODS: 36 test persons underwent complete ophthalmological examination and were equally distributed into 3 age groups. Electroretinograms were recorded according to ISCEV standards. Randomly, in one eye a Henkes electrode was used and in the other eye a DTL electrode. Amplitudes of a- and b-waves and implicit times were measured and compared for the two electrode types. RESULTS: 34 of 36 test persons preferred DTL electrodes. Electrical performance concerning b-wave amplitudes was comparable. Statistically significant differences were detected only for scotopic combined cone-rod stimulation in the age groups 20 - 40 and 41 - 60 years between the different electrodes. Other recordings did not show differences. A statistically significant reduction of signal amplitudes with age was detected for scotopic isolated rod signals and combined cone-rod signals. Significance level was p < 0.05. No conjunctival or corneal erosions were found after ERG recordings for either electrode. CONCLUSIONS: Electrical performance is comparable between electrodes. For scotopic stimulations age was a significant influencing factor for signal amplitude and should be respected for normative values. DTL electrodes were preferred by the vast majority of patients. No adverse clinical effects were observed for either electrode. DTL electrodes should be preferred due to hygienic reasons (single use) and patient comfort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE To identify the mutation responsible for an abnormal electroretinogram (ERG) in a transgenic mouse line (tg21) overexpressing erythropoietin (Epo). The tg21 line was generated on a mixed (C3H; C57BL/6) background and lacked the b-wave component of the ERG. This no-b-wave (nob) ERG is seen in other mouse models with depolarizing bipolar cell (DBC) dysfunction and in patients with the complete form of congenital stationary night blindness (cCSNB). We determined the basis for the nob ERG phenotype and screened C3H mice for the mutation to evaluate whether this finding is important for the vision research community. METHODS ERGs were used to examine retinal function. The retinal structure of the transgenic mice was investigated using histology and immunohistochemistry. Inverse PCR was performed to identify the insertion site of the Epo transgene in the mouse genome. Affected mice were backcrossed to follow the inheritance pattern of the nob ERG phenotype. Quantitative real-time PCR (qRT PCR), Sanger sequencing, and immunohistochemistry were used to identify the mutation causing the defect. Additional C3H sublines were screened for the detected mutation. RESULTS Retinal histology and blood vessel structure were not disturbed, and no loss of DBCs was observed in the tg21 nob mice. The mutation causing the nob ERG phenotype is inherited independently of the tg21 transgene. The qRT PCR experiments revealed that the nob ERG phenotype reflected a mutation in Gpr179, a gene involved in DBC signal transduction. PCR analysis confirmed the presence of the Gpr179(nob5) insertional mutation in intron 1 of Gpr179. Screening for mutations in other C3H-derived lines revealed that C3H.Pde6b(+) mice carry the Gpr179 (nob5) allele whereas C3H/HeH mice do not. CONCLUSIONS We identified the presence of the Gpr179(nob5) mutation causing DBC dysfunction in a C3H-derived transgenic mouse line. The nob phenotype is not related to the presence of the transgene. The Gpr179(nob5) allele can be added to the list of background alleles that impact retinal function in commonly used mouse lines. By providing primers to distinguish between Gpr179 mutant and wild-type alleles, this study allows investigators to monitor for the presence of the Gpr179(nob5) mutation in other mouse lines derived from C3H.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the retina, the glutamate transporter GLAST is expressed in Müller cells, whereas the glutamate transporter GLT-1 is found only in cones and various types of bipolar cells. To investigate the functional role of this differential distribution of glutamate transporters, we have analyzed GLAST and GLT-1 mutant mice. In GLAST-deficient mice, the electroretinogram b-wave and oscillatory potentials are reduced and retinal damage after ischemia is exacerbated, whereas GLT-1-deficient mice show almost normal electroretinograms and mild increased retinal damage after ischemia. These results demonstrate that GLAST is required for normal signal transmission between photoreceptors and bipolar cells and that both GLAST and GLT-1 play a neuroprotective role during ischemia in the retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have isolated a dominant mutation, night blindness a (nba), that causes a slow retinal degeneration in zebrafish. Heterozygous nba fish have normal vision through 2–3 months of age but subsequently become night blind. By 9.5 months of age, visual sensitivity of affected fish may be decreased more than two log units, or 100-fold, as measured behaviorally. Electroretinographic (ERG) thresholds of mutant fish are also raised significantly, and the ERG b-wave shows a delayed implicit time. These defects are due primarily to a late-onset photoreceptor cell degeneration involving initially the rods but eventually the cones as well. Homozygous nba fish display an early-onset neuronal degeneration throughout the retina and elsewhere in the central nervous system. As a result, animals develop with small eyes and die by 4–5 days postfertilization (pf). These latter data indicate that the mutation affecting nba fish is not in a photoreceptor cell-specific gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expression of G protein-regulated phospholipase C (PLC) β4 in the retina, lateral geniculate nucleus, and superior colliculus implies that PLC β4 may play a role in the mammalian visual process. A mouse line that lacks PLC β4 was generated and the physiological significance of PLC β4 in murine visual function was investigated. Behavioral tests using a shuttle box demonstrated that the mice lacking PLC β4 were impaired in their visual processing abilities, whereas they showed no deficit in their auditory abilities. In addition, the PLC β4-null mice showed 4-fold reduction in the maximal amplitude of the rod a- and b-wave components of their electroretinograms relative to their littermate controls. However, recording from single rod photoreceptors did not reveal any significant differences between the PLC β4-null and wild-type littermates, nor were there any apparent differences in retinas examined with light microscopy. While the behavioral and electroretinographic results indicate that PLC β4 plays a significant role in mammalian visual signal processing, isolated rod recording shows little or no apparent deficit, suggesting that the effect of PLC β4 deficiency on the rod signaling pathway occurs at some stage after the initial phototransduction cascade and may require cell–cell interactions between rods and other retinal cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optokinetic and phototactic behaviors of zebrafish larvae were examined for their usefulness in screening for recessive defects in the visual system. The optokinetic response can be reliably and rapidly detected in 5-day larvae, whereas the phototactic response of larvae is variable and not robust enough to be useful for screening. We therefore measured optokinetic responses of mutagenized larvae as a genetic screen for visual system defects. Third-generation larvae, representing 266 mutagenized genomes, were examined for abnormal optokinetic responses. Eighteen optokinetic-defective mutants were identified and two mutants that did not show obvious morphological defects, no optokinetic response a (noa) and partial optokinetic response a (poa), were studied further. We recorded the electroretinogram (ERG) to determine whether these two mutations affect the retina. The b-wave of noa larvae was grossly abnormal, being delayed in onset and significantly reduced in amplitude. In contrast, the ERG waveform of poa larvae was normal, although the b-wave was reduced in amplitude in bright light. Histologically, the retinas of noa and poa larvae appeared normal. We conclude that noa larvae have a functional defect in the outer retina, whereas the outer retina of poa larvae is likely to be normal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uveítes são inflamações intra-oculares geralmente crônicas e constituem uma das principais causas de cegueira no mundo. Os corticosteroides são a droga de primeira escolha para o tratamento das uveítes não infecciosas, mas muitas vezes há necessidade do uso de outras drogas imunossupressoras. O micofenolato de mofetila (MMF) é um potente imunossupressor administrado por via oral que vem sendo utilizado com sucesso no tratamento das uveítes, mas cujos efeitos colaterais muitas vezes tornam necessária sua suspensão. O MMF é uma pró-droga, que é transformada no fígado em ácido micofenólico (MPA), o imunossupressor ativo. Para minimizar os efeitos colaterais do uso do MPA e permitir que o olho receba uma dose maior da droga, testamos os efeitos da injeção intravítrea do MPA em um modelo de uveíte crônica experimental (UCE) em olhos de coelhos. Os objetivos deste estudo foram: 1) reproduzir um modelo de UCE em coelhos através da injeção intravítrea de M. tuberculosis; 2) estabelecer uma dose segura de MPA a ser injetada no vítreo; e 3) analisar os efeitos morfológicos, clínicos e eletrofisiológicos da injeção intravítrea de MPA em coelhos utilizados como modelo de UCE. O modelo de UCE reproduzido apresentou uma inflamação autolimitada, possuindo um pico de inflamação no 17° dia após a indução da uveíte. As doses de MPA testadas (0,1 e 1mg) não foram toxicas para a retina do coelho. O modelo de UCE recebeu uma injeção intravítrea de 0,1mg de MPA e as análises clinicas demonstraram uma redução na inflamação. As análises realizadas com o eletrorretinograma (ERG) também apontaram uma melhora na inflamação através da recuperação da latência das ondas-a e b (fotópicas e escotópica) e recuperação da amplitude da onda-a (fotópica). As análises morfológicas com HE não apresentaram alterações na estrutura retinia, porem a imunohistoquimica para proteína GFAP evidenciou gliose das células de Müller, sinalizando um processo inflamatório. Concluímos que o modelo de UCE reproduziu uma uveíte anterior semelhante à uveíte causada em humanos e a dose de MPA utilizada apresentou efeitos terapêuticos durante o pico de inflamação, mostrando uma diminuição da inflamação e promovendo a recuperação de fotorreceptores e células bipolares-ON. Este resultado faz das injeções intravítreas de MPA um recurso promissor no tratamento de uveítes. Porém, novos experimentos são necessários para padronizar os resultados encontrados

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. Mice rendered hypoglycemic by a null mutation in the glucagon receptor gene Gcgr display late-onset retinal degeneration and loss of retinal sensitivity. Acute hyperglycemia induced by dextrose ingestion does not restore their retinal function, which is consistent with irreversible loss of vision. The goal of this study was to establish whether long-term administration of high dietary glucose rescues retinal function and circuit connectivity in aged Gcgr−/− mice. Methods. Gcgr−/− mice were administered a carbohydrate-rich diet starting at 12 months of age. After 1 month of treatment, retinal function and structure were evaluated using electroretinographic (ERG) recordings and immunohistochemistry. Results. Treatment with a carbohydrate-rich diet raised blood glucose levels and improved retinal function in Gcgr−/− mice. Blood glucose increased from moderate hypoglycemia to euglycemic levels, whereas ERG b-wave sensitivity improved approximately 10-fold. Because the b-wave reflects the electrical activity of second-order cells, we examined for changes in rod-to-bipolar cell synapses. Gcgr−/− retinas have 20% fewer synaptic pairings than Gcgr+/− retinas. Remarkably, most of the lost synapses were located farthest from the bipolar cell body, near the distal boundary of the outer plexiform layer (OPL), suggesting that apical synapses are most vulnerable to chronic hypoglycemia. Although treatment with the carbohydrate-rich diet restored retinal function, it did not restore these synaptic contacts. Conclusions. Prolonged exposure to diet-induced euglycemia improves retinal function but does not reestablish synaptic contacts lost by chronic hypoglycemia. These results suggest that retinal neurons have a homeostatic mechanism that integrates energetic status over prolonged periods of time and allows them to recover functionality despite synaptic loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca2+-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa (RP). The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT) and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg) and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz). Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer (ONL), and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis considers the visual electrophysiological effects of vigabatrin (an anti-epileptic drug, which acts by increasing the levels of the inhibitory neurotransmitter GABA on the retina of the eye compared to the concentric visual field defects which have been found associated with the drug. Flash and pattern ERG's, EOG's multifocal ERG's (VERIS), flash and pattern VEP's and visual fields were tested. Although VEP's have been shown not to be affected by vigabatrin, these were recorded to complete the testing. Initially, of the eight vigabatrin patients with known visual field defects, 7 showed abnormally delayed 30Hz flicker a-wave latencies, 5 abnormally delayed 30Hz b-wave latencies and 6 abnormally low 30Hz amplitudes. Also 7 showed an abnormally prolonged latency of oscillatory potential 1 (OP1). The two patients taking vigabatrin at the time of testing showed low EOG Arden index values. The VERIS results correlated well with the severity of the visual field defects. Following this finding, eleven healthy subjects received vigabatrin over a 10-day period. No changes were seen in the visual fields, however, the photopic ERG b-wave latency significantly increased (although not to abnormal values). A matched pairs study with eleven vigabatrin, patients and eleven epileptic patients, who had never taken vigabatrin supported the findings of abnormal 30Hz flicker b-wave and OP latencies associated with vigabatrin, again with the VERIS results correlating to the severity of the visual field defect. The abnormal 30Hz flicker and VERIS responses indicate involvement of the cone photoreceptors and the OP's show an effect on the amacrine cells. The ERG increase in the photopic b-wave latency also suggests involvement of the bipolar cells, however, this effect and the reversible effect on the Arden index after cessation of the drug may be unrelated to the visual field defect. To conclude this thesis, a field specific VEP stimulus was developed to assess the retinal function in the peripheral field of paediatric patients. It comprises of a dartboard stimulus with a central 0-5 degree black and white chequered stimulus, a blank 5-30 degree annulus and a 30-60 degree peripheral chequered stimulus. When optimised on four vigabatrin patients it was found that no peripheral response can be evoked with a field loss exceeding 30-35 degrees. Co-operation was found to be successful in children as young as four years old.