979 resultados para Aviation toxicology.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomization characteristics of aviation biofuel discharging from a simplex swirl atomizer into quiescent atmospheric air are studied. The aviation biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% VonSol-53 (aromatics). The experiments are conducted in a spray test facility at varying fuel flow rate conditions. The measured characteristics include atomizer flow number, spray cone angle, breakup length of liquid sheet, wavelength of undulations on liquid sheet, and spray droplet size. The characteristics of biofuel sheet breakup are deduced from the captured images of biofuel spray. The measurements of spray droplet size distribution are obtained using Spraytec. The experimentally measured characteristics of the biofuel sheet breakup are compared with the predictions obtained from the liquid film breakup model proposed by Senecal et al. (1999). The measurements of wavelength and breakup length of the biofuel sheet discharging from the simplex swirl atomizer agree well with the model predictions. The model-predicted droplet size for the biofuel spray is significantly higher than the experimentally measured Sauter mean diameter (SMD). The spray droplets formed from the liquid sheet breakup undergo secondary atomization until 35-45 mm from the atomizer exit and thereafter the SMD increases downstream due to the combined effect of fuel evaporation and droplet coalescence. A good comparison is observed between the experimentally measured SMD of the biofuel spray and the predictions obtained using the empirical correlation reported in literature for sprays discharging from simplex swirl atomizers. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as ``thermal co-reduction'' approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

针对广泛应用于超燃冲压发动机的吸热碳氢燃料,简要介绍了用于模拟燃料热物理特性的替代燃料方法和广义对应状态法则.以大庆RP-3航空煤油为例,选择了一个由49%(摩尔比)正十烷,44%1,3,5-三甲基环己烷以及7%正丙基苯组成的替代煤油用来模拟RP-3航空煤油进行热物理特性研究,并采用广义对应状态法则对替代煤油热力学和输运特性进行了数值研究.在此基础上,提出了预测超临界态流体通过音速喷管流量的新方法并得到了实验验证.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated tube system with cracked products collection/analysis was used and it can achieve a fuel temperature range of 700-1100 K, a pressure range of 3.5-4.5 MPa and a residence time of approximately 0.5-1.3 s. Compositions of the cracked gaseous products and mass flow rate of the kerosene flow at varied temperatures and pressures were obtained experimentally. A one-step lumped model was developed with the cracked mixtures grouped into three categories: unreacted kerosene, gaseous products and residuals including liquid products and carbon deposits. Based on the model, fuel conversion on the mass basis, the reaction rate and the residence time were estimated as functions of temperature. Meanwhile, a sonic nozzle was used for the control of the mass flow rate of the cracked kerosene, and correlation of the mass flow rate gives a good agreement with the measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under conditions relevant to a regenerative cooling system for scramjet applications. A test facility developed for the present study can handle kerosene in a temperature range of 300-1000 K, a pressure range of 2.6-5 MPa, and a mass How rate range of 10-100 g/s. In addition, the test section was uniquely designed such that both the wall temperature and the bulk fuel temperature were measured at the same location along the flowpath. The measured temperature distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed; hence, the associated correlation showed a more significant Reynolds number dependency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit of 160 μg AZA/kg whole shellfish flesh was established by the EU in order to protect human health; however, in some cases, AZA concentrations far exceed the action level. Herein we discuss recent advances on the chemistry of various AZA analogs, review the ecology of AZAs, including the putative progenitor algal species, collectively interpret the in vitro and in vivo data on the toxicology of AZAs relating to human health issues, and outline the European legislature associated with AZAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.