962 resultados para Autoregressive decomposition
Resumo:
In this thesis, a new technique has been developed for determining the composition of a collection of loads including induction motors. The application would be to provide a representation of the dynamic electrical load of Brisbane so that the ability of the power system to survive a given fault can be predicted. Most of the work on load modelling to date has been on post disturbance analysis, not on continuous on-line models for loads. The post disturbance methods are unsuitable for load modelling where the aim is to determine the control action or a safety margin for a specific disturbance. This thesis is based on on-line load models. Dr. Tania Parveen considers 10 induction motors with different power ratings, inertia and torque damping constants to validate the approach, and their composite models are developed with different percentage contributions for each motor. This thesis also shows how measurements of a composite load respond to normal power system variations and this information can be used to continuously decompose the load continuously and to characterize regarding the load into different sizes and amounts of motor loads.
Resumo:
The main contribution of this paper is decomposition/separation of the compositie induction motors load from measurement at a system bus. In power system transmission buses load is represented by static and dynamic loads. The induction motor is considered as the main dynamic loads and in the practice for major transmission buses there will be many and various induction motors contributing. Particularly at an industrial bus most of the load is dynamic types. Rather than traing to extract models of many machines this paper seeks to identify three groups of induction motors to represent the dynamic loads. Three groups of induction motors used to characterize the load. These are the small groups (4kw to 11kw), the medium groups (15kw to 180kw) and the large groups (above 630kw). At first these groups with different percentage contribution of each group is composite. After that from the composite models, each motor percentage contribution is decomposed by using the least square algorithms. In power system commercial and the residential buses static loads percentage is higher than the dynamic loads percentage. To apply this theory to other types of buses such as residential and commerical it is good practice to represent the total load as a combination of composite motor loads, constant impedence loads and constant power loads. To validate the theory, the 24hrs of Sydney West data is decomposed according to the three groups of motor models.
Resumo:
Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, 75 °C) to determine the effect on the thermal stability of the hydrotalcite structure, and to identify other precipitates that form at these temperatures. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; 1) Bayer hydrotalcite, 2), calcium carbonate species, and 3) hydromagnesite. The DTG curve can be separated into four decomposition steps; 1) the removal of adsorbed water and free interlayer water in hydrotalcite (30 – 230 °C), 2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250 – 400 °C), 3) the decarbonation of hydromagnesite (400 – 550 °C), and 4) the decarbonation of aragonite (550 – 650 °C).
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.
Resumo:
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
Resumo:
Eigen-based techniques and other monolithic approaches to face recognition have long been a cornerstone in the face recognition community due to the high dimensionality of face images. Eigen-face techniques provide minimal reconstruction error and limit high-frequency content while linear discriminant-based techniques (fisher-faces) allow the construction of subspaces which preserve discriminatory information. This paper presents a frequency decomposition approach for improved face recognition performance utilising three well-known techniques: Wavelets; Gabor / Log-Gabor; and the Discrete Cosine Transform. Experimentation illustrates that frequency domain partitioning prior to dimensionality reduction increases the information available for classification and greatly increases face recognition performance for both eigen-face and fisher-face approaches.
Resumo:
A series of kaolinite-potassium acetate intercalation composite was prepared. The thermal behavior and decomposition of these composites were investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), X-ray diffraction (XRD) and Fourier-transformation infrared (FT-IR). The XRD pattern at room temperature indicated that intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.428nm. The peak intensity of the expanded phase of the composite decreased with heating above 300°C, and the basal spacing reduced to 1.19nm at 350°C and 0.718nm at 400°C. These were supported by DSC-TGA and FT-IR measurements, where the endothermic reactions are observed between 300 and 600°C. These reactions can be divided into two stages: 1) Removal of the intercalated molecules between 300-400°C. 2) Dehydroxylation of kaolinite between 400-600°C. Significant changes were observed in the infrared bands assigned to outer surface hydroxyl, inner surface hydroxyl, inner hydroxyl and hydrogen bands.
Resumo:
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.
Resumo:
Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the ‘cave’ mineral brushite. X-ray diffraction shows that brushite from the Jenolan Caves is very pure. Thermogravimetric analysis coupled with ion current mass spectrometry shows a mass loss at 111°C due to loss of water of hydration. A further decomposition step occurs at 190°C with the conversion of hydrogen phosphate to a mixture of calcium ortho-phosphate and calcium pyrophosphate. TG-DTG shows the mineral is not stable above 111°C. A mechanism for the formation of brushite on calcite surfaces is proposed, and this mechanism has relevance to the formation of brushite in urinary tracts.