988 resultados para Automated feedback
Resumo:
Placing portal incisions during arthroscopic hip surgery presents challenges for surgeons in terms of anatomic accessibility and patient safety. Based on key anatomic landmarks and portal placement information from recent literature, suggested portal incisions were determined. Guidance in the placement of the three most common portal incision locations (anterior, anterolateral, and posterolateral) for arthroscopic surgery; in addition to visual feedback on tool trajectory to the hip joint is provided in real time by a computer aided system for hip arthroscopy. By simplifying the portal placement process, one of the most challenging aspects of arthroscopic hip surgery, an increased use of this minimally invasive technique could be possible. In addition to portal information, improvements to an existing computer aided system for arthroscopic hip surgery, including a new hip model and redesigned mechanical tracking linkage, were completed.
Resumo:
Exploiting the full potential of telemedical systems means using platform based solutions: data are recovered from biomedical sensors, hospital information systems, care-givers, as well as patients themselves, and are processed and redistributed in an either centralized or, more probably, decentralized way. The integration of all these different devices, and interfaces, as well as the automated analysis and representation of all the pieces of information are current key challenges in telemedicine. Mobile phone technology has just begun to offer great opportunities of using this diverse information for guiding, warning, and educating patients, thus increasing their autonomy and adherence to their prescriptions. However, most of these existing mobile solutions are not based on platform systems and therefore represent limited, isolated applications. This article depicts how telemedical systems, based on integrated health data platforms, can maximize prescription adherence in chronic patients through mobile feedback. The application described here has been developed in an EU-funded R&D project called METABO, dedicated to patients with type 1 or type 2 Diabetes Mellitus
Resumo:
Flow Cytometry analyzers have become trusted companions due to their ability to perform fast and accurate analyses of human blood. The aim of these analyses is to determine the possible existence of abnormalities in the blood that have been correlated with serious disease states, such as infectious mononucleosis, leukemia, and various cancers. Though these analyzers provide important feedback, it is always desired to improve the accuracy of the results. This is evidenced by the occurrences of misclassifications reported by some users of these devices. It is advantageous to provide a pattern interpretation framework that is able to provide better classification ability than is currently available. Toward this end, the purpose of this dissertation was to establish a feature extraction and pattern classification framework capable of providing improved accuracy for detecting specific hematological abnormalities in flow cytometric blood data. ^ This involved extracting a unique and powerful set of shift-invariant statistical features from the multi-dimensional flow cytometry data and then using these features as inputs to a pattern classification engine composed of an artificial neural network (ANN). The contribution of this method consisted of developing a descriptor matrix that can be used to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant lymphocytes, which are blood cells that are potentially indicative of disorders such as leukemia and infectious mononucleosis. ^ This study showed that the set of shift-and-rotation-invariant statistical features extracted from the eigensystem of the flow cytometric data pattern performs better than other commonly-used features in this type of disease detection, exhibiting an accuracy of 80.7%, a sensitivity of 72.3%, and a specificity of 89.2%. This performance represents a major improvement for this type of hematological classifier, which has historically been plagued by poor performance, with accuracies as low as 60% in some cases. This research ultimately shows that an improved feature space was developed that can deliver improved performance for the detection of variant lymphocytes in human blood, thus providing significant utility in the realm of suspect flagging algorithms for the detection of blood-related diseases.^
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
Our key contribution is a flexible, automated marking system that adds desirable functionality to existing E-Assessment systems. In our approach, any given E-Assessment system is relegated to a data-collection mechanism, whereas marking and the generation and distribution of personalised per-student feedback is handled separately by our own system. This allows content-rich Microsoft Word feedback documents to be generated and distributed to every student simultaneously according to a per-assessment schedule.
The feedback is adaptive in that it corresponds to the answers given by the student and provides guidance on where they may have gone wrong. It is not limited to simple multiple choice which are the most prescriptive question type offered by most E-Assessment Systems and as such most straightforward to mark consistently and provide individual per-alternative feedback strings. It is also better equipped to handle the use of mathematical symbols and images within the feedback documents which is more flexible than existing E-Assessment systems, which can only handle simple text strings.
As well as MCQs the system reliably and robustly handles Multiple Response, Text Matching and Numeric style questions in a more flexible manner than Questionmark: Perception and other E-Assessment Systems. It can also reliably handle multi-part questions where the response to an earlier question influences the answer to a later one and can adjust both scoring and feedback appropriately.
New question formats can be added at any time provided a corresponding marking method conforming to certain templates can also be programmed. Indeed, any question type for which a programmatic method of marking can be devised may be supported by our system. Furthermore, since the student’s response to each is question is marked programmatically, our system can be set to allow for minor deviations from the correct answer, and if appropriate award partial marks.
Resumo:
This paper presents a novel program annotation mechanism which enables students to obtain feedback from tutors on their programs in a far simpler and more efficient way than is possible with, for example, email. A common scenario with beginning students is to email tutors with copies of their malfunctioning programs. Unfortunately the emailed program often bears little resemblance to the program the student has been trying to make work; often it is incomplete, a different version and corrupted. We propose an annotation mechanism enabling students to simply and easily annotate their programs with comments asking for help. Similarly our mechanism enables tutors to view students’ programs and to reply to their comments in a simple and structured fashion. This means students can get frequent and timely feedback on their programs; tutors can provide such feedback efficiently, and hence students’ learning is greatly improved.