893 resultados para Audio-visual production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interacting with technology within a vehicle environment using a voice interface can greatly reduce the effects of driver distraction. Most current approaches to this problem only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to circumvent this is to use the visual modality in addition. However, capturing, storing and distributing audio-visual data in a vehicle environment is very costly and difficult. One current dataset available for such research is the AVICAR [1] database. Unfortunately this database is largely unusable due to timing mismatch between the two streams and in addition, no protocol is available. We have overcome this problem by re-synchronising the streams on the phone-number portion of the dataset and established a protocol for further research. This paper presents the first audio-visual results on this dataset for speaker-independent speech recognition. We hope this will serve as a catalyst for future research in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an exploratory study into the effective use of embedding custom made audiovisual case studies (AVCS) in enhancing the student’s learning experience. This paper describes a project that used AVCS for a large divergent cohort of undergraduate students, enrolled in an International Business course. The study makes a number of key contributions to advancing learning and teaching within the discipline. AVCS provide first hand reporting of the case material, where the students have the ability to improve their understanding from both verbal and nonverbal cues. The paper demonstrates how AVCS can be embedded in a student-centred teaching approach to capture the students’ interest and to enhance a deep approach to learning by providing real-world authentic experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual information in the form of lip movements of the speaker has been shown to improve the performance of speech recognition and search applications. In our previous work, we proposed cross database training of synchronous hidden Markov models (SHMMs) to make use of external large and publicly available audio databases in addition to the relatively small given audio visual database. In this work, the cross database training approach is improved by performing an additional audio adaptation step, which enables audio visual SHMMs to benefit from audio observations of the external audio models before adding visual modality to them. The proposed approach outperforms the baseline cross database training approach in clean and noisy environments in terms of phone recognition accuracy as well as spoken term detection (STD) accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech recognition can be improved by using visual information in the form of lip movements of the speaker in addition to audio information. To date, state-of-the-art techniques for audio-visual speech recognition continue to use audio and visual data of the same database for training their models. In this paper, we present a new approach to make use of one modality of an external dataset in addition to a given audio-visual dataset. By so doing, it is possible to create more powerful models from other extensive audio-only databases and adapt them on our comparatively smaller multi-stream databases. Results show that the presented approach outperforms the widely adopted synchronous hidden Markov models (HMM) trained jointly on audio and visual data of a given audio-visual database for phone recognition by 29% relative. It also outperforms the external audio models trained on extensive external audio datasets and also internal audio models by 5.5% and 46% relative respectively. We also show that the proposed approach is beneficial in noisy environments where the audio source is affected by the environmental noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These are turbulent times for audio- visual production companies. Radical changes, both inside and outside the organizations, reach across national markets and different genres. For instance, production methods are changing; the demand from audiences and advertisers is changing; power relations between the actors involved in the value chain are changing; and increasing concentration makes the market even more competitive for small independent players. From a perspective of the structure–conduct– performance paradigm (Ramstad, 1997) it is reasonable to expect that these changes on a structural level of the industry will cause the production companies to adapt their strategic behaviour. The current challenges for media companies are a combination of rising complexity and uncertainty in the market (Picard, 2004). The increasing complexity can for instance be observed in the growing number of market segments and in the continuing trend towards cross- media strategies where media companies operate in multiple markets and on multiple platforms...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Audio/Visual Emotion Challenge and Workshop (AVEC 2011) is the first competition event aimed at comparison of multimedia processing and machine learning methods for automatic audio, visual and audiovisual emotion analysis, with all participants competing under strictly the same conditions. This paper first describes the challenge participation conditions. Next follows the data used – the SEMAINE corpus – and its partitioning into train, development, and test partitions for the challenge with labelling in four dimensions, namely activity, expectation, power, and valence. Further, audio and video baseline features are introduced as well as baseline results that use these features for the three sub-challenges of audio, video, and audiovisual emotion recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent debates about media literacy and the internet have begun to acknowledge the importance of active user-engagement and interaction. It is not enough simply to access material online, but also to comment upon it and re-use. Yet how do these new user expectations fit within digital initiatives which increase access to audio-visual-content but which prioritise access and preservation of archives and online research rather than active user-engagement? This article will address these issues of media literacy in relation to audio-visual content. It will consider how these issues are currently being addressed, focusing particularly on the high-profile European initiative EUscreen. EUscreen brings together 20 European television archives into a single searchable database of over 40,000 digital items. Yet creative re-use restrictions and copyright issues prevent users from re-working the material they find on the site. Instead of re-use, EUscreen instead offers access and detailed contextualisation of its collection of material. But if the emphasis for resources within an online environment rests no longer upon access but on user-engagement, what does EUscreen and similar sites offer to different users?