973 resultados para Atomic and Molecular Physics, and Optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic and ionic radii are presented for the elements E104-E120 and E156-E172. It is shown that a number of effects correlated with the large relativistic contraction of orbitals with low angular momentum leads to smaller atoms for higher atomic numbers. It is expected that Cs is the largest atom in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of light and illumination systems in automotive industry for different purposes has been increased significantly in recent years. Volvo as one of the leading companies in manufacturing of luxury cars has found the great capacity in this area. The performance of such an illumination systems is one of the challenges that engineers in this industry are facing with. In this study an effort has been made to design a system to make the iron mark of Volvo being illuminated and the system is being evaluated by optics simulation in software using Ray optics method. At the end, results are assessed and some optimizations are carried out. Different kind of light guides, front side of the iron mark and some possible arrangement for LED also evaluated and different materials tested. The best combination from uniformity, color and amount of luminance aspect selected as a possible solution for this special project which can be used as a base for further studies in Volvo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By considering nuclear and ultracold trapped atomic systems, we review the trajectory of Efimov excited states in the complex plane by changing the two-body scattering lengths and one three-body scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree-Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55% This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different widths, representing the three families of AGNFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two concurrent semantics (i.e. semantics where concurrency is explicitely represented) for CC programs with atomic tells. One is based on simple partial orders of computation steps, while the other one is based on contextual nets and it is an extensión of a previous one for eventual CC programs. Both such semantics allow us to derive concurrency, dependency, and nondeterminism information for the considered languages. We prove some properties about the relation between the two semantics, and also about the relation between them and the operational semantics. Moreover, we discuss how to use the contextual net semantics in the context of CLP programs. More precisely, by interpreting concurrency as possible parallelism, our semantics can be useful for a safe parallelization of some CLP computation steps. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it for the task of scheduling CC programs. Moreover, our semantics is also suitable for CC programs with a new kind of atomic tell (called locally atomic tell), which checks for consistency only the constraints it depends on. Such a tell achieves a reasonable trade-off between efficiency and atomicity, since the checked constraints can be stored in a local memory and are thus easily accessible even in a distributed implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a concurrent semantics (i.e. a semantics where concurrency is explicitely represented) for CC programs with atomic tells. This allows to derive concurrency, dependency, and nondeterminism information for such languages. The ability to treat failure information puts CLP programs also in the range of applicability of our semantics: although such programs are not concurrent, the concurrency information derived in the semantics may be interpreted as possible parallelism, thus allowing to safely parallelize those computation steps which appear to be concurrent in the net. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it to schedule CC programs. The fact that the semantical structure contains dependency information suggests a new tell operation, which checks for consistency only the constraints it depends on, achieving a reasonable trade-off between efficiency and atomicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references and index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renormalizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant superfluidity and related problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO 2 2+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340±0.010 eV. The fragmentation of energy selected CO 2 2+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from ∼38.7 to ∼41 eV above the ground state of neutral CO 2 has been observed in the experimental time window of ∼0.1-2.3 μs with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO ++O + formation in indirect dissociative double photoionization below the threshold for formation of CO 2 2+. The threshold for CO ++O + formation is found to be 35.56±0.10 eV or lower, which is more than 2 eV lower than previous measurements.