968 resultados para Atmospheric nucleation.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioaerosols are a subgroup of atmospheric aerosols and are often linked to the spread of human, animal and plant diseases. Bioaerosols also may play an indirect effect on environmental processes, including the formation of precipitation and alteration of the global climate through their role as nuclei for cloud droplet formation. Several types of biological organisms (e.g., fungi and bacteria) have been shown to be effective ice nuclei (IN) and cloud condensation nuclei (CCN). During 21 days in August 2013 we participated in a collaborative international campaign at a rural, coastal site near the village of Ucluelet on the west coast of Vancouver Island, British Columbia, Canada. The experiments were conducted as part of the NETCARE project (the NETwork on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments), in part to examine cloud nuclei properties of marine aerosol. The study was conducted from a mobile trailer located approximately 100 m from the coast. A suite of aerosol instrumentation was operated for approximately one month. Key instruments utilized as a part of this thesis include the wideband integrated bioaerosol sensor (WIBS-4A) and the multiple orifice uniform deposition impactor (MOUDI) coupled with an off-line droplet freezing technique (DFT) for the measurement of ice nucleation activity of particles in immersion mode. The WIBS measures the concentration and properties of individual fluorescent particles suspended in the air, which can serve as a proxy for airborne biological particle content. Particles shown to be fluorescent by the WIBS instrument were divided into seven categories based on the pattern of fluorescence each particle exhibited in the three fluorescent channels. Results of the WIBS analysis show that the fluorescent particle concentration in the region correlated well with IN number. The fluorescent particle concentration correlated well with the number of particles shown to be ice active as a function of both particle size and freezing temperature. Correlations involving marine aerosols and marine biological activity indicate that the majority of IN measured at the coastal site likely are not from have marine sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal relationship between the Southern Annular Mode (SAM) and the spatial distribution of the cyclone systems over Southern Hemisphere is investigated for the period 1980 to 1999. In addition, seasonal frontogenesis and rainfall distribution over South America and South Atlantic Ocean during different SAM phases were also analyzed. It is observed that during negative SAM phases the cyclone trajectories move northward when compared to the positive one, and in the South America and South Atlantic sector there is intense frontogenetic activity and positive anomaly precipitation over the Southeast of the South America. In general, SAM positive phase shows opposite signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work has aimed to determine the 16 US EPA priority PAH atmospheric particulate matter levels present in three sites around Salvador, Bahia: (i) Lapa bus station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, and (iii) Bananeira village on Maré Island, a non vehicle-influenced site with activities such as handcraft work and fisheries. Results indicated that BbF (0.130-6.85 ng m-3) is the PAH with highest concentration in samples from Aratu harbor and Bananeira and CRY (0.075-6.85 ng m-3) presented higher concentrations at Lapa station. PAH sources from studied sites were mainly of anthropogenic origin such as gasoline-fueled light-duty vehicles and diesel-fueled heavy-duty vehicles, discharges in the port, diesel burning from ships, dust ressuspension, indoor soot from cooking, and coal and wood combustion for energy production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91 per cent of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30 per cent of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m−3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19 per cent higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m−3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70 per cent) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in Sao Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of Sao Paulo can be used as representative of the entire metropolitan region of Sao Paulo. The maximum monthly averaged value of the LW is observed during summer (389 +/- 14 W m(-2): January), and the minimum is observed during winter (332 +/- 12 W m(-2); July). The effective emissivity follows the LW and shows a maximum in summer (0.907 +/- 0.032; January) and a minimum in winter (0.818 +/- 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 +/- 3.5 W m(-2) and the atmospheric effective emissivity by about 0.088 +/- 0.024. In August, the driest month of the year in Sao Paulo, the diurnal evolution of the LW shows a minimum (325 +/- 11 W m(-2)) at 0900 LT and a maximum (345 12 W m-2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 +/- 0.027) during daytime and a maximum (0.842 +/- 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% +/- 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in Sao Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in Sao Paulo is to use an expression derived from a purely empirical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R(2)=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N(CCN,0.10)approximate to 35 cm(-3) to N(CCN,0.82)approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N(CN,30)approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N(CCN,0.10/NCN,30)approximate to 0.1 to N(CCN,0.82/NCN,30)approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N(CCN,S) assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266 +/- 0.001(stat)(-0.014)(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108 +/- 0.019(stat + syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.