963 resultados para Athletic performance
Resumo:
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Resumo:
Monocarboxylate transporters (MCTs) transport lactate and protons across cell membranes. During intense exercise, lactate and protons accumulate in the exercising muscle and are transported to the plasma. In the horse, MCTs are responsible for the majority of lactate and proton removal from exercising muscle, and are therefore also the main mechanism to hinder the decline in pH in muscle cells. Two isoforms, MCT1 and MCT4, which need an ancillary protein CD147, are expressed in equine muscle. In the horse, as in other species, MCT1 is predominantly expressed in oxidative fibres, where its likely role is to transport lactate into the fibre to be used as a fuel at rest and during light work, and to remove lactate during intensive exercise when anaerobic energy production is needed. The expression of CD147 follows the fibre type distribution of MCT1. These proteins were detected in both the cytoplasm and sarcolemma of muscle cells in the horse breeds studied: Standardbred and Coldblood trotters. In humans, training increases the expression of both MCT1 and MCT4. In this study, the proportion of oxidative fibres in the muscle of Norwegian-Swedish Coldblood trotters increased with training. Simultaneously, the expression of MCT1 and CD147, measured immunohistochemically, seemed to increase more in the cytoplasm of oxidative fibres than in the fast fibre type IIB. Horse MCT4 antibody failed to work in immunohistochemistry. In the future, a quantitative method should be introduced to examine the effect of training on muscle MCT expression in the horse. Lactate can be taken up from plasma by red blood cells (RBCs). In horses, two isoforms, MCT1 and MCT2, and the ancillary protein CD147 are expressed in RBC membranes. The horse is the only species studied in which RBCs have been found to express MCT2, and the physiological role of this protein in RBCs is unknown. The majority of horses express all three proteins, but 10-20% of horses express little or no MCT1 or CD147. This leads to large interindividual variation in the capacity to transport lactate into RBCs. Here, the expression level of MCT1 and CD147 was bimodally distributed in three studied horse breeds: Finnhorse, Standardbred and Thoroughbred. The level of MCT2 expression was distributed unimodally. The expression level of lactate transporters could not be linked to performance markers in Thoroughbred racehorses. In the future, better performance indexes should be developed to better enable the assessment of whether the level of MCT expression affects athletic performance. In human subjects, several mutations in MCT1 have been shown to cause decreased lactate transport activity in muscle and signs of myopathy. In the horse, two amino acid sequence variations, one of which was novel, were detected in MCT1 (V432I and K457Q). The mutations found in horses were in different areas compared to mutations found in humans. One mutation (M125V) was detected in CD147. The mutations found could not be linked with exercise-induced myopathy. MCT4 cDNA was sequenced for the first time in the horse, but no mutations could be detected in this protein.
Resumo:
This work studies the major sports overload injuries of the lower extremities from the biomechanical point of view. At the same time, the main paradigms of podiatric biomechanics and the application of new biomechanical theories in the study of these lesions are reviewed. With current legislation, clinical gait biomechanical studies should be carried out in health centres and the only health professionals who can perform them are podiatrists and doctors (because they both can diagnose). Graduates in physical education can carry out studies in the field or in the sports court for the sole purpose of improving athletic performance, but never intended to treat a pathology overload.
Resumo:
An increasing understanding of the process of erythropoiesis raises some interesting questions about the pathophysiology, diagnosis and treatment of anemia and erythrocytosis. The mechanisms underlying the development of many of the erythrocytoses, previously characterised as idiopathic, have been elucidated leading to an increased understanding of oxygen homeostasis. Characterisation of anemia and erythrocytosis in relation to serum erythropoietin levels can be a useful addition to clinical diagnostic criteria and provide a rationale for treatment with erythropoiesis stimulating agents (ESAs). Recombinant human erythropoietin as well as other ESAs are now widely used to treat anemias associated with a range of conditions, including chronic kidney disease, chronic inflammatory disorders and cancer. There is also heightened awareness of the potential abuse of ESAs to boost athletic performance in competitive sport. The discovery of erythropoietin receptors outside of the erythropoietic compartment may herald future applications for ESAs in the management of neurological and cardiac diseases. The current controversy concerning optimal hemoglobin levels in chronic kidney disease patients treated with ESAs and the potential negative clinical outcomes of ESA treatment in cancer reinforces the need for cautious evaluation of the pleiotropic effects of ESAs in non-erythroid tissues.
Resumo:
It is likely that humans have sought enhancements for themselves or their children for as long as they have recognised that improvements in individuals are a possibility. One genre of self-improvement in modern society can be called 'biomedical enhancements'. These include drugs, surgery and other medical interventions aimed at improving the mind, body or performance. This paper uses the case of human growth hormone (hGH) to examine the social nature of enhancements. Synthetic hGH was developed in 1985 by the pharmaceutical industry and was approved by the FDA for very specific uses, particularly treatment of growth hormone deficiency. However, it has also been promoted for a number of 'off label' uses, most of which can be deemed enhancements. Drugs approved for one treatment pave the way for use as enhancements for other problems. Claims have been made for hGH as a treatment for idiopathic shortness, as an anti-ageing agent and to improve athletic performance. Using the hGH case, we are able to distinguish three faces of biomedical enhancement: normalisation, repair and performance edge. Given deeply ingrained social and individual goals in American society, the temptations of biomedical enhancements provide inducement for individuals and groups to modify their situation. We examine the temptations of enhancement in terms of issues such as unnaturalness, fairness, risk and permanence, and shifting social meanings. In our conclusions, we outline the potentials and pitfalls of biomedical enhancement.
Resumo:
The kinesio taping is a technique that was created in 1979 by Doctor Kenzo Kase I’m looking through it that could generate a new therapeutic option to control pain, improve athletic performance and reduce the impact of musculoskeletal disorders. From the Sydney 2000 Olympic Games, this technique as a therapeutic alternative PTO and is composed of health professionals in the field of sport and physical rehabilitation. Objetive: This article aims to identify theoretical approaches on the bandage neuromuscular. Material and methods: held today, for which conducted a literature search of databases such as como Proquest, Ovid, Cochraine, PEDro, Journal ofOrthopedic and Sports Physical, Sciencedirect, Pubmed y Literatura Latinoamericana y del Caribe en Ciencias de la Salud (Lilacs). The paper proposes a scheme of contextualization of the current landscape of the use and effects of kinesio taping in the management of different pathologies of the musculo-skeletal system in sports. Conclusion: it is concluded that currently many health professionals, and take the neuromuscular bandage a good therapeutic option in the management of diseases affecting the human body is investigated and every day more about the subject, which makes these new therapeutic methods to acquire a scientific value and transcends knowledge.
Resumo:
In seeking to maximize athletic performance, optimizing the improvement of players, we find a line of study that focuses on the detection, selection and talent development. The talent is one of the fundamental constraints to access to excellence in competitive sport. Its identification is the first step to select individuals with the characteristics required to achieve the improvement sports through a complex process of expertise. The aim of this work is essentially to realize how it is made detection and selection of talent in Handball and understand how countries reference to the sport develop their work. In this sense, we choose in addition to Portugal, France, Spain and Denmark. We want to see how these four countries invest and develop detection and talent selection, taking into account the different characteristics of countries in many different contexts. So we can see that each country invests in talent selection and detection taking into account the financial capacity, the development and popularity of the sport. In all three countries, with the exception of Portugal, the Handball is a sport with great impact not only through their championships as well as the level of selections. All invest in detection and selection of talents initially by direct observation and collection of anthropometric data, and organize their structure depending on the size of your country. With the exception of France all other countries after detecting the taletos, fits us in selection schemes open. France chooses to create training centers where these young people will develop their skills. These centers are autonomous although the supervision and guidance of the technical staff of the federation. All countries except Portugal, opt to develop regional selections, thereby widening the recruitment base within a competitive framework extra club.
Resumo:
The kinanthropometric characteristics are used by the sports science as selection criteria and detection of talents. Hence, this study aimed at comparing the anthropometrical profile, the body composition, the somatotype and the vertical jumps of the beach volleyball players. This study consists of 79 male beach volleyball players, being forty nine (n=49) Brazilian participants of the National Circuit and thirty (n=30) of 15 countries participating in the XV Pan American Games. In order to analyze the vertical jumps of the Brazilian the participants were allocated into two groups (G1 and G2) in agreement with the national ranking of their teams. The vertical jump protocol developed by Smith and collaborators was used to evaluate the vertical jumps of spike and block. The Heath-Carter anthropometrical technique (1990) was used for calculating the somatotype. The Student s t test with the Bonferroni adjustment was used to calculate the differences among the investigated variables. The multiple regression analysis was used to identify the contributions of the anthropometrical variables in the performance of the vertical jumps and the multivariance analysis was used to calculate the differences among the components of the somatotype. The Brazilian athletes of G1 were better than G2 in the spike jump (p <0.01), block jump (p <0.01) and in the block difference (p <0.01). The prediction model of the spike jump of G2 included the body mass and standing spike reach (adjusted R2 = 0.77), the body mass and the standing block reach were also included in the model of the block jump (adjusted R2 = 0.73). The regression model of G1 was not statistically significant. As for the somatotype, statistically significant differences were found between the Brazilians and the Pan Americans (Wilks' lambda = 0.498; p <0.05). The Brazilian somatotype was classified as balanced mesomorph (2.7-4.3-3.0) and the Pan American somatotype as endomorphic mesomorph (3.5-4.6-2.4). As to the specific position of the block game (2.8-4.3-2.9) and the defense game (2.6-4.4-3.0), the Brazilian somatotype was classified as balanced mesomorph and the Pan American somatotype, the block (3.7-4.4-2.4) and the defense (3.4-4.9-2.3), was classified as endomorphic mesomorph. In conclusion, the vertical jump height (spike and block) influences the male Brazilian beach volleyball players performance. The physical type of the Brazilian blockers and defenders was similar with relationship to the somatotype. The Brazilian and Pan American beach volleyball players differ in terms of kinanthropometric characteristics. This work had a multidisciplinary feature with the participation of several departments and laboratories, like the Physiotherapy Department, the Nutrition Department, the Physical Education Laboratory, thus corroborating the multidisciplinary research feature
Resumo:
Objective: The aim of the study was to investigate physical characteristics and to examine association between somatotype and performance in collegiate runners of 100 m and 400 m. Methods: The sample, male runners (n=39) competing at the regional level in the state of Rio Grande do Norte, Brazil, had height, body mass, skinfolds, limb circumference and skeletal breadths measured. Then, the somatotype was calculated by Health-Carter method. Races (100 m and 400 m) were held to assess athletic performance. Descriptive statistics were calculated for the total sample, as well as for the 100 m and 400 m groups, and established four subgroups, named quartiles. For analysis between groups of runners (100 m x 400 m) was used Student's t test for independent samples. To examine the relationship between the race times and anthropometric variables, was used the Pearson correlation test. The somatotype dispersion distance and somatotype spatial distance were calculated among subgroups. One-way analysis of variance, the Wilcoxon test followed of Tukey post test, and correlation analysis were used with a significance level of p<0.05. Results: Somatotype with mesomorphy and ectomorphy dominance was exhibited by 100 m and 400 m athletes. Endomorphy was low in both groups, especially in 400m runners, who had more elongated body types than 100 m runners. When separately compared by athletic performance quartile, 100 m sprinters of better qualifications (G100-G1) had somatotype with dominant mesomorphy, whereas 400 m runners had somatotype with dominant ectomorphy. A significant correlation (r = -0.55, p=0.008) between calf circumference and 100 m race times was observed showing the importance of muscularity, whereas a significant correlation was found between height and 400 m race times (r = -0.53, p=0.02) showing the importance of linearity. Conclusion: Runners of 100 and 400 may show differences in physical characteristics, depending on the level of athletic performance. Anthropometric periodic evaluations may help in the training process of these athletes. However, more specific assessment parameters should be taken into account, because somatotype by itself has not power to predict whether an individual will succeed in racing speed
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O ferro participa de várias funções vitais do organismo, como o transporte de oxigênio e de elétrons e a síntese do DNA. Desequilíbrios do metabolismo do ferro podem estar relacionados a sua deficiência ou sobrecarga, porém a deficiência é rara em equinos adultos. Apesar disso, criadores e veterinários de cavalos de esporte utilizam frequentemente suplementos contendo ferro com o objetivo de melhorar o desempenho atlético. Até o momento, nenhum estudo comprovou que o exercício induz deficiência de ferro nessa espécie ou que a suplementação de ferro melhora o seu desempenho. O diagnóstico de deficiência ou sobrecarga de ferro depende de uma avaliação laboratorial criteriosa. A suplementação em equinos não deficientes pode induzir o acúmulo excessivo de ferro, com graves consequências para o animal. Este trabalho revisa as alterações do metabolismo do ferro em equinos submetidos ao exercício, os métodos laboratoriais de avaliação dos estoques de ferro e as consequências da suplementação indevida.
Resumo:
Avaliou-se o fornecimento de concentrados com baixo e alto teor de óleo de soja a cavalos atletas, submetidos a duas intensidades de treinos aeróbicos montados, sobre a resposta metabólica de parâmetros bioquímicos do sangue, de importância ao desempenho esportivo. Foram utilizados quatro cavalos, em delineamento experimental quadrado latino, com tratamentos em esquema fatorial 2x2 (duas inclusões de óleo de soja e duas rotinas de treinos aeróbicos). Os tratamentos foram compostos por teores de 5 e 15% de óleo de soja nos concentrados e duas intensidades de treinos montados por 40 e 60min, classificadas como aeróbicas. As amostras de sangue foram colhidas após o último treino de 40 ou 60min, de cada período experimental. Monitorou-se, após o exercício, os parâmetros bioquímicos, triglicerídeos (TG), colesterol total (CT), glicose (GLI) e lactato (LAC). Houve redução no teor TG (P<0,05) para cavalos consumindo 15% de óleo e treinados aerobicamente por 60 min., o CT elevou-se em função do aumento da inclusão de óleo (P<0,05), incremento LAC (P<0,05) em cavalos treinados por 60min., independente do nível de óleo ingerido (1,48mmol/L), bem como não se verificou efeito (P>0,05) dos tratamentos sobre GLI. Concluiu-se que, para cavalos atletas em atividade aeróbica, o oferecimento de concentrado com alto teor óleo de soja deve ser associado ao treino montado de maior intensidade.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)