986 resultados para Asymptotic expansions
An asymptotic analysis for the coupled dispersion characteristics of a structural acoustic waveguide
Resumo:
Analytical expressions are derived, using asymptotics, for the fluid-structure coupled wavenumbers in a one-dimensional (1-D) structural acoustic waveguide. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation with an added term due to the fluid-structure coupling. As a result of this coupling, the prior uncoupled structural and acoustic wavenumbers, now become coupled structural and acoustic wavenumbers. A fluid-loading parameter e, defined as the ratio of mass of fluid to mass of the structure per unit area, is introduced which when set to zero yields the uncoupled dispersion equation. The coupled wavenumber is then expressed in terms of an asymptotic series in e. Analytical expressions are found as e is varied from small to large values. Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. This systematic derivation helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Though the asymptotic expansion used is limited to the first-order correction factor, the results are close to the numerical results. A general trend is that a given wavenumber branch transits from a rigid-walled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an-intersection in the coupled case, but a gap is created at that frequency. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The coupled wavenumbers of a fluid-filled flexible cylindrical shell vibrating in the axisymmetric mode are studied. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter e due to the coupling. Using the smallness of Poisson's ratio (v), a double-asymptotic expansion involving e and v 2 is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (for large and small values of E). Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. The wavenumber solutions are continuously tracked as e varies from small to large values. A general trend observed is that a given wavenumber branch transits from a rigidwalled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. Only the axisymmetric mode is considered. However, the method can be extended to the higher order modes.
Resumo:
Structural-acoustic waveguides of two different geometries are considered: a 2-D rectangular and a circular cylindrical geometry. The objective is to obtain asymptotic expansions of the fluid-structure coupled wavenumbers. The required asymptotic parameters are derived in a systematic way, in contrast to the usual intuitive methods used in such problems. The systematic way involves analyzing the phase change of a wave incident on a single boundary of the waveguide. Then, the coupled wavenumber expansions are derived using these asymptotic parameters. The phase change is also used to qualitatively demarcate the dispersion diagram as dominantly structure-originated, fluid originated or fully coupled. In contrast to intuitively obtained asymptotic parameters, this approach does not involve any restriction on the material and geometry of the structure. The derived closed-form solutions are compared with the numerical solutions and a good match is obtained. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Mishuris, G; Kuhn, G., (2001) 'Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface', Zeitschrift f?r Angewandte Mathematik und Mechanik 81(12) pp.811-826 RAE2008
Resumo:
Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
"Supported in part by contract US AEC AT(11-1)2383."
Resumo:
We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.
Resumo:
In this paper the method of renormalization group (RG) [Phys. Rev. E 54, 376 (1996)] is related to the well-known approximations of Rytov and Born used in wave propagation in deterministic and random media. Certain problems in linear and nonlinear media are examined from the viewpoint of RG and compared with the literature on Born and Rytov approximations. It is found that the Rytov approximation forms a special case of the asymptotic expansion generated by the RG, and as such it gives a superior approximation to the exact solution compared with its Born counterpart. Analogous conclusions are reached for nonlinear equations with an intensity-dependent index of refraction where the RG recovers the exact solution. © 2008 Optical Society of America.
Resumo:
The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.
Resumo:
In this paper we have discussed the motion of a viscous fluid with suspended particles through a curved tube of small curvature ratio. The system is treated as two separate interacting continua. Solutions for axial and secondary velocities are obtained in the form of asymptotic expansions in powers of Dean Number. The streamline pattern for the particulate phase reveals many interesting features. The influence of the particulate continium on the fluid is described by the parameter τ which depends on the density ratio of the two continua. The concentration distribution of the particles in a given cross section is determined. It is noticed that the particles move closer to the wall for certain values of the concentration and the density ratio.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
The paper presents a unified picture of the structure of steady one-dimensional shock waves in partially ionized argon in the absence of external electric and magnetic fields. The study is based on a two-temperature three-fluid continuum approach using the Navier-Stokes equations as a model and taking account of nonequilibrium ionization. The analysis of the governing equations is based on the method of matched asymptotic expansions and leads to three layers: (1) a broad thermal layer dominated by electron thermal conduction; (2) an atom-ion shock structured by heavy-particle collisional dissipative mechanisms; and (3) an ionization relaxation layer in which electron-atom inelastic collisions dominate.
Resumo:
A study has been made of the problem of steady, one-dimensional, laminar flame propagation in premixed gases, with the Lewis number differing from (and equal to) unity. Analytical solutions, using the method of matched asymptotic expansions, have been obtained for large activation energies. Numerical solutions have been obtained for a wide range of the reduced activation temperature parameter (n {geometrically equal to} E/RTb), and the Lewis number δ. The studies reveal that the flame speed eigenvalue is linear in Lewis number for first order and quadratic in Lewis number for second order reactions. For a quick determination of flame speeds, with reasonable accuracy, a simple rule, expressing the flame speed eigenvalue as a function of the Lewis number and the centroid of the reaction rate function, is proposed. Comparisons have been made with some of the earlier works, for both first and second order reactions.
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.