996 resultados para Asymptotic dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the phenomenon of self-organized criticality (SOC) in a simple random walk model described by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have obtained power laws in the time intervals between consecutive events of "digging." Being a simple random walk, the power laws in space translate to power laws in time. We also study the finite size scaling of asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively from the cascade models of SOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by developments in spacecraft dynamics, the asymptotic behaviour and boundedness of solution of a special class of time varying systems in which each term appears as the sum of a constant and a time varying part, are analysed in this paper. It is not possible to apply standard textbook results to such systems, which are originally in second order. Some of the existing results are reformulated. Four theorems which explore the relations between the asymptotic behaviour/boundedness of the constant coefficient system, obtained by equating the time varying terms to zero, to the corresponding behaviour of the time varying system, are developed. The results show the behaviour of the two systems to be intimately related, provided the solutions of the constant coefficient system approach zero are bounded for large values of time, and the time varying terms are suitably restrained. Two problems are tackled using these theorems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical expressions are found for the wavenumbers and resonance frequencies in flexible, orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders n. The Donnell-Mushtari shell theory is used to model the dynamics of the cylindrical shell. Initially, an in vacuo cylindrical isotropic shell is considered and expressions for all the wavenumbers (bending, near-field bending, longitudinal and torsional) are found. Subsequently, defining a suitable orthotropy parameter epsilon, the problem of wave propagation in an orthotropic shell is posed as a perturbation on the corresponding problem for an isotropic shell. Asymptotic expressions for the wavenumbers in the in vacuo orthotropic shell are then obtained by treating epsilon as an expansion parameter. In both cases (isotropy and orthotropy), a frequency-scaling parameter (eta) and Poisson's ratio (nu) are used to find elegant expansions in the different frequency regimes. The asymptotic expansions are compared with numerical solutions in each of the cases and the match is found to be good. The main contribution of this work lies in the extension of the existing literature by developing closed-form expressions for wavenumbers with arbitrary circumferential orders n in the case of both, isotropic and orthotropic shells. Finally, we present natural frequency expressions in finite shells (isotropic and orthotropic) for the axisymmetric mode and compare them with numerical and ANSYS results. Here also, the comparison is found to be good. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show, by using direct numerical simulations and theory, how, by increasing the order of dissipativity (alpha) in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case alpha -> infinity U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of alpha greater than a crossover value alpha(crossover). We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted moderately-thick beam having rectangular cross sections and made of transversely isotropic materials. The anisotropic beam is modeled from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is devoted to the investigation of nonnegative solutions and the stability and asymptotic properties of the solutions of fractional differential dynamic linear time-varying systems involving delayed dynamics with delays. The dynamic systems are described based on q-calculus and Caputo fractional derivatives on any order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population dynamics of the juvenile hilsa shad (Tenualosa ilisha) in the nursery ground of the Meghna River have been studied on the basis of the length cohort analysis of 8023 specimens. The growth parameters viz; asymptotic length (Lα), curvature character (K) and initial time (t0) were found to be 30.69 cm, 1.2 yrˉ¹ and 0.45 yrˉ¹ respectively. Curvature parameter indicates that jatka is a fast growth performer. The natural, fishing and total mortality were found to be 1.37 yrˉ¹, 1.41 yrˉ¹ and 2.78 yrˉ¹ respectively. Survival rate (S) was found to be 6.2%. A small difference was found between the age at first capture (Tc) and the recruitment age (Tr). Stocks of jatka seem to be overexploited and need to be conserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population parameters of Lepturacanthus savala from the trawl catches in the north-eastern part of the Bay of Bengal, Bangladesh were investigated based on length frequency data, using complete ELEFAN computer program. The asymptotic length (Lα) and growth constant (K) were estimated to be 106.50 cm (total length) and 0.80/year respectively. Based on these growth parameters, the total mortality (Z) was estimated to be 1.89. The estimated values for natural mortality (M) and fishing mortality (F) were 1.08 and 0.81 respectively. The estimated value for the exploitation rate (E) using the length converted catch curve was 0.43. The recruitment pattern showed two peaks per year. The estimated sizes of L. savala at 25, 50 and 75% probabilities of capture were 57.49, 60.39 and 63.28 cm respectively. The estimated length weight relationship for combined sex was W=0.00093 TL(super)2.97