885 resultados para Asymptotic covariance matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance |S| chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance |S| chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample vat-lances of the two quality characteristics, shortly VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar are faster detection of process changes and better diagnostic feature, that is, with the VMAX statistic It is easier to identify the out-of-control variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MRMAX chart is a single chart based on the standardized sample means and sample ranges for monitoring the mean vector and the covariance matrix of multivariate processes. User's familiarity with the computation of these statistics is a point in favor of the MRMAX chart. As a single chart, the recently proposed MRMAX chart is very appropriate for supplementary runs rules. In this article, we compare the supplemented MRMAX chart and the synthetic MRMAX chart with the standard MRMAX chart. The supplementary and the synthetic runs rules enhance the performance of the MRMAX chart. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present a new control chart for monitoring the covariance matrix in a bivariate process. In this method, n observations of the two variables were considered as if they came from a single variable (as a sample of 2n observations), and a sample variance was calculated. This statistic was used to build a new control chart specifically as a VMIX chart. The performance of the new control chart was compared with its main competitors: the generalized sampled variance chart, the likelihood ratio test, Nagao's test, probability integral transformation (v(t)), and the recently proposed VMAX chart. Among these statistics, only the VMAX chart was competitive with the VMIX chart. For shifts in both variances, the VMIX chart outperformed VMAX; however, VMAX showed better performance for large shifts (higher than 10%) in one variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

8 pages, 2 figures, to be published in the conference proceedings of 11th international conference "Computer Data Analysis & Modeling 2016"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may however rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance-covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance-covariance matrix, potentially increasing the adaptive potential of such populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments Alexander Dürre was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. David E. Tyler was supported in part by the National Science Foundation grant DMS-1407751. A visit of Daniel Vogel to David E. Tyler was supported by a travel grant from the Scottish Universities Physics Alliance. The authors are grateful to the editors and referees for their constructive comments.