929 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
Resumo:
Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.
Resumo:
Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This study focuses on the learning and teaching of Reading in English as a Foreign Language (REFL), in Libya. The study draws on an action research process in which I sought to look critically at students and teachers of English as a Foreign Language (EFL) in Libya as they learned and taught REFL in four Libyan research sites. The Libyan EFL educational system is influenced by two main factors: the method of teaching the Holy-Quran and the long-time ban on teaching EFL by the former Libyan regime under Muammar Gaddafi. Both of these factors have affected the learning and teaching of REFL and I outline these contextual factors in the first chapter of the thesis. This investigation, and the exploration of the challenges that Libyan university students encounter in their REFL, is supported by attention to reading models. These models helped to provide an analytical framework and starting point for understanding the many processes involved in reading for meaning and in reading to satisfy teacher instructions. The theoretical framework I adopted was based, mainly and initially, on top-down, bottom-up, interactive and compensatory interactive models. I drew on these models with a view to understanding whether and how the processes of reading described in the models could be applied to the reading of EFL students and whether these models could help me to better understand what was going on in REFL. The diagnosis stage of the study provided initial data collected from four Libyan research sites with research tools including video-recorded classroom observations, semi-structured interviews with teachers before and after lesson observation, and think-aloud protocols (TAPs) with 24 students (six from each university) in which I examined their REFL reading behaviours and strategies. This stage indicated that the majority of students shared behaviours such as reading aloud, reading each word in the text, articulating the phonemes and syllables of words, or skipping words if they could not pronounce them. Overall this first stage indicated that alternative methods of teaching REFL were needed in order to encourage ‘reading for meaning’ that might be based on strategies related to eventual interactive reading models adapted for REFL. The second phase of this research project was an Intervention Phase involving two team-teaching sessions in one of the four stage one universities. In each session, I worked with the teacher of one group to introduce an alternative method of REFL. This method was based on teaching different reading strategies to encourage the students to work towards an eventual interactive way of reading for meaning. A focus group discussion and TAPs followed the lessons with six students in order to discuss the 'new' method. Next were two video-recorded classroom observations which were followed by an audio-recorded discussion with the teacher about these methods. Finally, I conducted a Skype interview with the class teacher at the end of the semester to discuss any changes he had made in his teaching or had observed in his students' reading with respect to reading behaviour strategies, and reactions and performance of the students as he continued to use the 'new' method. The results of the intervention stage indicate that the teacher, perhaps not surprisingly, can play an important role in adding to students’ knowledge and confidence and in improving their REFL strategies. For example, after the intervention stage, students began to think about the title, and to use their own background knowledge to comprehend the text. The students employed, also, linguistic strategies such as decoding and, above all, the students abandoned the behaviour of reading for pronunciation in favour of reading for meaning. Despite the apparent efficacy of the alternative method, there are, inevitably, limitations related to the small-scale nature of the study and the time I had available to conduct the research. There are challenges, too, related to the students’ first language, the idiosyncrasies of the English language, the teacher training and continuing professional development of teachers, and the continuing political instability of Libya. The students’ lack of vocabulary and their difficulties with grammatical functions such as phrasal and prepositional verbs, forms which do not exist in Arabic, mean that REFL will always be challenging. Given such constraints, the ‘new’ methods I trialled and propose for adoption can only go so far in addressing students’ difficulties in REFL. Overall, the study indicates that the Libyan educational system is underdeveloped and under resourced with respect to REFL. My data indicates that the teacher participants have received little to no professional developmental that could help them improve their teaching in REFL and skills in teaching EFL. These circumstances, along with the perennial problem of large but varying class sizes; student, teacher and assessment expectations; and limited and often poor quality resources, affect the way EFL students learn to read in English. Against this background, the thesis concludes by offering tentative conclusions; reflections on the study, including a discussion of its limitations, and possible recommendations designed to improve REFL learning and teaching in Libyan universities.
Resumo:
We consider the two-dimensional Navier-Stokes equations with a time-delayed convective term and a forcing term which contains some hereditary features. Some results on existence and uniqueness of solutions are established. We discuss the asymptotic behaviour of solutions and we also show the exponential stability of stationary solutions.
Resumo:
In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.