965 resultados para Asymmetric pulmonary edema
Resumo:
After an uneventful general anesthesia, in a horse negative pressure pulmonary edema developed due to acute upper airway obstruction during the anesthetic recovery phase after colic surgery. No pathologic alteration of respiration was observed until the horse stood up and began suffocating. The horse had recovered with the nasogastric tube in situ. This, together with the postmortem diagnosis of laryngeal hemiplegia resulted in impairment of airflow through the larynx and development of pulmonary edema. Our objective is to alert clinicians about the possible hazard of recovery with an in-situ nasogastric tube.
Resumo:
The development of pulmonary edema is divided in cardiogenic and non-cardiogenic. Cardiogenic edema pathogenically is caused by elevated hydrostatic pressure in the pulmonary capillaries due to left sided congestive heart failure. Non-cardiogenic pulmonary edema is categorized depending on the underlying pathogenesis in low-alveolar pressure, elevated permeability or neurogenic edema. Some important examples of causes are upper airway obstruction like in laryngeal paralysis or strangulation for low alveolar pressure, leptospirosis and ARDS for elevated permeability, and epilepsy, brain trauma and electrocution for neurogenic edema. The differentiation between cardiogenic versus non-cardiogenic genesis is not always straightforward, but most relevant, because treatment markedly differs between the two. Of further importance is the identification of the specific underlying cause in non-cardiogenic edema, not only for therapeutic but particularly for prognostic reasons. Depending on the cause the prognosis ranges from very poor to good chance of complete recovery.
Resumo:
CONTEXT: Individuals susceptible to high-altitude pulmonary edema (HAPE) are characterized by exaggerated pulmonary hypertension and arterial hypoxemia at high altitude, but the underlying mechanism is incompletely understood. Anecdotal evidence suggests that shunting across a patent foramen ovale (PFO) may exacerbate hypoxemia in HAPE. OBJECTIVE: We hypothesized that PFO is more frequent in HAPE-susceptible individuals and may contribute to more severe arterial hypoxemia at high altitude. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of 16 HAPE-susceptible participants and 19 mountaineers resistant to this condition (repeated climbing to peaks above 4000 m and no symptoms of HAPE). MAIN OUTCOME MEASURES: Presence of PFO determined by transesophageal echocardiography, estimated pulmonary artery pressure by Doppler echocardiography, and arterial oxygen saturation measured by pulse oximetry in HAPE-susceptible and HAPE-resistant participants at low (550 m) and high altitude (4559 m). RESULTS: The frequency of PFO was more than 4 times higher in HAPE-susceptible than in HAPE-resistant participants, both at low altitude (56% vs 11%, P = .004; odds ratio [OR], 10.9 [95% confidence interval {CI}, 1.9-64.0]) and high altitude (69% vs 16%, P = .001; OR, 11.7 [95% CI, 2.3-59.5]). At high altitude, mean (SD) arterial oxygen saturation prior to the onset of pulmonary edema was significantly lower in HAPE-susceptible participants than in the control group (73% [10%] vs 83% [7%], P = .001). Moreover, in the HAPE-susceptible group, participants with a large PFO had more severe arterial hypoxemia (65% [6%] vs 77% [8%], P = .02) than those with smaller or no PFO. CONCLUSIONS: Patent foramen ovale was roughly 4 times more frequent in HAPE-susceptible mountaineers than in participants resistant to this condition. At high altitude, HAPE-susceptible participants with a large PFO had more severe hypoxemia. We speculate that at high altitude, a large PFO may contribute to exaggerated arterial hypoxemia and facilitate HAPE.
Resumo:
Pulmonary edema is a problem of major clinical importance resulting from a persistent imbalance between forces that drive water into the airspace of the lung and the biological mechanisms for its removal. Here, we will review the fundamental mechanisms implicated in the regulation of alveolar fluid homeostasis. We will then describe the perturbations of pulmonary fluid homeostasis implicated in the pathogenesis of pulmonary edema in conditions associated with increased pulmonary capillary pressure, namely cardiogenic pulmonary edema and high-altitude pulmonary edema (HAPE), with particular emphasis on the latter that has provided important new insight into underlying mechanisms of pulmonary edema. We will provide evidence that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent a central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction, and, in turn, capillary stress failure and alveolar fluid flooding. We will then demonstrate that exaggerated pulmonary hypertension, while possibly a prerequisite, may not always be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we will outline, how this new insight gained from studies in HAPE, may be translated into the management of pulmonary edema and hypoxemia related disease states in general.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.
Resumo:
Flash pulmonary edema (FPE) is a general clinical term used to describe a particularly dramatic form of acute decompensated heart failure. Well-established risk factors for heart failure such as hypertension, coronary ischemia, valvular heart disease, and diastolic dysfunction are associated with acute decompensated heart failure as well as with FPE. However, endothelial dysfunction possibly secondary to an excessive activity of renin-angiotensin-aldosterone system, impaired nitric oxide synthesis, increased endothelin levels, and/or excessive circulating catecholamines may cause excessive pulmonary capillary permeability and facilitate FPE formation. Renal artery stenosis particularly when bilateral has been identified has a common cause of FPE. Lack of diurnal variation in blood pressure and a widened pulse pressure have been identified as risk factors for FPE. This review is an attempt to delineate clinical and pathophysiological mechanisms responsible for FPE and to distinguish pathophysiologic, clinical, and therapeutic aspects of FPE from those of acute decompensated heart failure.
Resumo:
Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
Neurogenic pulmonary edema is a rare and serious complication in patients with head injury. It also may develop after a variety of cerebral insults such as subarachnoid hemorrhage, brain tumors and after epileptic seizures. Thirty six patients with severe head injury and four patients with cerebrovascular insults treated in Intensive Care Unit of HC-UNICAMP from January to September 1995 were evaluated. In this period there were two patients with neurogenic pulmonary edema, one with head injury and other with intracerebral hemorrhage. Diagnosis was made by rapid onset of pulmonary edema, severe hypoxemia, decrease of pulmonary complacence and diffuse pulmonary infiltrations, without previous history of tracheal aspiration or any other risk factor for developement of adult respiratory distress syndrom. In the first case, with severe head trauma, neurogenic pulmonary edema was diagnosed at admission one hour after trauma, associated with severe systemic inflammatory reaction, and good outcome in three days. The second case, with hemorragic vascular insult, developed neurogenic pulmonary edema the fourth day after drenage of intracerebral hematom and died.
Resumo:
Heart disease (HD) can stress the alveolar blood-gas barrier, resulting in parenchymal inflammation and remodeling. Patients with HD may therefore display any of the symptoms commonly attributed to primary pulmonary disease, although tissue documentation of corresponding changes through surgical lung biopsy (SLB) is rarely done. Intent on exploring the basis of HD-related alveolar-capillary barrier dysfunction, a retrospective analysis of SLB histopathology was conducted in patients with clinically diagnosed HD, diffuse pulmonary infiltrates, and no evidence of primary pulmonary disease. Patients eligible for the study had a clinical diagnosis of heart disease, acute or chronic, and presented with diffuse infiltrates on chest X-ray. All qualified subjects (N = 23) who underwent diagnostic SLB between January 1982 and December 2005 were subsequently examined. Specific biopsy parameters investigated included demonstrable edema, siderophage influx, hemorrhage, venous and lymphatic ectasia, vascular sclerosis, capillary congestion, and fibroblast proliferation. Based on observed alveolar-capillary barrier (ACB) alterations, three main morphologic groups emerged: one group (6 patients) with alveolar edema; a second group (11 patients) characterized by pulmonary congestion; and a final group (6 patients) showing microscopic foci of acute ACB lung injury. Alveolar-capillary stress due to acute high-pressure or volume overload often manifests as diffuse pulmonary infiltrates with variable but generally predictable histopathology. In patients with biopsy-proven alveolar edema, pulmonary congestion, or acute microscopic lung injury, the clinician must be alert for the possibility of primary heart disease, particularly if the patient is elderly or when a history of myocardial, valvular, or coronary vascular disease exists.
Resumo:
O edema pulmonar de pressão negativa (EPPN) também descrito na literatura como edema agudo do pulmão pós-obstrutivo ou pós-extubação traqueal, é uma entidade rara, com uma incidência de aproximadamente 0.1 % em doentes anestesiados. Os autores descrevem o caso, ocorrido após extubação traqueal, de um doente submetido a orquidectomia por via laparoscópica sob anestesia geral balanceada. Relatam a fisiopatologia, o padrão radiológico e broncoscópico e as medidas terapêuticas instituídas.
Resumo:
OBJECTIVE - To assess the incidence of fatal pulmonary embolism (FPE), the accuracy of clinical diagnosis, and the profile of patients who suffered an FPE in a tertiary University Hospital. METHODS - Analysis of the records of 3,890 autopsies performed at the Department of General Pathology from January 1980 to December 1990. RESULTS - Among the 3,980 autopsies, 109 were cases of clinically suspected FPE; of these, 28 cases of FPE were confirmed. FPE accounted for 114 deaths, with clinical suspicion in 28 cases. The incidence of FPE was 2.86%. No difference in sex distribution was noted. Patients in the 6th decade of life were most affected. The following conditions were more commonly related to FPE: neoplasias (20%) and heart failure (18.5%). The conditions most commonly misdiagnosed as FPE were pulmonary edema (16%), pneumonia (15%) and myocardial infarction (10%). The clinical diagnosis of FPE showed a sensitivity of 25.6%, a specificity of 97.9%, and an accuracy of 95.6%. CONCLUSION - The diagnosis of pulmonary embolism made on clinical grounds still has considerable limitations.
Resumo:
OBJECTIVE: To study the arrangement of the myocardial fiber bundles at the pulmonary venous left atrial junction in patients with pulmonary hypertension, and to discuss the pathophysiological importance of this element in the etiology of acute pulmonary edema. METHODS: We obtained 12 hearts and their pulmonary vein extremities from postmortem examinations of patients with the anatomicopathological diagnosis of acute pulmonary edema. The specimens, which had no grossly visible morphological cardiac alterations, were fixed in 10% formalin, and the muscular arrangement of the pulmonary venous left atrial junctions was analyzed. This material was then isolated, embedded in paraffin, underwent serial cutting (50 µm of thickness), and was stained with Azam's trichrome. RESULTS: We observed in our specimens that: a) the myocardial fiber bundles that originate in the atrial wall and involve the openings of the pulmonary veins were fewer than those observed in healthy material; b) the myocardial fiber bundles that extend into the pulmonary veins were shorter than those found in material originating from individuals with no pulmonary hypertension. CONCLUSION: Anatomical changes that result in a reduction in the amount of myocardial fiber bundles in the pulmonary venous left atrial junction, isolated or associated with other factors, may be the cause of disorders in pulmonary circulation, leading to an increase in pulmonary venous pressure, and, consequently, to acute pulmonary edema.