900 resultados para Astronautics and state
Resumo:
1. Resilience-based approaches are increasingly being called upon to inform ecosystem management, particularly in arid and semi-arid regions. This requires management frameworks that can assess ecosystem dynamics, both within and between alternative states, at relevant time scales. 2. We analysed long-term vegetation records from two representative sites in the North American sagebrush-steppe ecosystem, spanning nine decades, to determine if empirical patterns were consistent with resilience theory, and to determine if cheatgrass Bromus tectorum invasion led to thresholds as currently envisioned by expert-based state-and-transition models (STM). These data span the entire history of cheatgrass invasion at these sites and provide a unique opportunity to assess the impacts of biotic invasion on ecosystem resilience. 3. We used univariate and multivariate statistical tools to identify unique plant communities and document the magnitude, frequency and directionality of community transitions through time. Community transitions were characterized by 37-47% dissimilarity in species composition, they were not evenly distributed through time, their frequency was not correlated with precipitation, and they could not be readily attributed to fire or grazing. Instead, at both sites, the majority of community transitions occurred within an 8-10year period of increasing cheatgrass density, became infrequent after cheatgrass density peaked, and thereafter transition frequency declined. 4. Greater cheatgrass density, replacement of native species and indication of asymmetry in community transitions suggest that thresholds may have been exceeded in response to cheatgrass invasion at one site (more arid), but not at the other site (less arid). Asymmetry in the direction of community transitions also identified communities that were at-risk' of cheatgrass invasion, as well as potential restoration pathways for recovery of pre-invasion states. 5. Synthesis and applications. These results illustrate the complexities associated with threshold identification, and indicate that criteria describing the frequency, magnitude, directionality and temporal scale of community transitions may provide greater insight into resilience theory and its application for ecosystem management. These criteria are likely to vary across biogeographic regions that are susceptible to cheatgrass invasion, and necessitate more in-depth assessments of thresholds and alternative states, than currently available.
Resumo:
In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53. We demonstrate that a non-cooperative positive feedback loop coupled with Myc sequestration at multiple binding sites can generate bistable Myc levels. Normal quiescent cells with Myc levels below the threshold can respond to mitogenic signals to activate the cyclin/cdk oscillator for limited cell divisions but the p53/Mdm2 oscillator remains nonfunctional. In response to stress, the p53/Mdm2 oscillator is activated in pulses that are critical to DNA repair. But if stress causes Myc levels to cross the threshold, Myc inactivates the p53/Mdm2 oscillator, abrogates p53 pulses, and pushes the cyclin/cdk oscillator into overdrive sustaining unchecked proliferation seen in cancer. However, if Myc is downregulated, the cyclin/cdk oscillator is inactivated and the p53/Mdm2 oscillator is reset and the cancer phenotype is reversed. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
There are seven strong earthquakes with M >= 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3 degrees 3 degrees, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Accepted Version
Resumo:
A birth-death process is subject to mass annihilation at rate β with subsequent mass immigration occurring into state j at rateα j . This structure enables the process to jump from one sector of state space to another one (via state 0) with transition rate independent of population size. First, we highlight the difficulties encountered when using standard techniques to construct both time-dependent and equilibrium probabilities. Then we show how to overcome such analytic difficulties by means of a tool developed in Chen and Renshaw (1990, 1993b); this approach is applicable to many processes whose underlying generator on E\{0} has known probability structure. Here we demonstrate the technique through application to the linear birth-death generator on which is superimposed an annihilation/immigration process.
Resumo:
Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.