989 resultados para Associative Memory
Resumo:
Most associative memory models perform one level mapping between predefined sets of input and output patterns1 and are unable to represent hierarchical knowledge. Complex AI systems allow hierarchical representation of concepts, but generally do not have learning capabilities. In this paper, a memory model is proposed which forms concept hierarchy by learning sample relations between concepts. All concepts are represented in a concept layer. Relations between a concept and its defining lower level concepts, are chunked as cognitive codes represented in a coding layer. By updating memory contents in the concept layer through code firing in the coding layer, the system is able to perform an important class of commonsense reasoning, namely recognition and inheritance.
Resumo:
This paper investigates processes and actions of diversifying memories of division in Northern Ireland’s political conflict known as the Troubles. Societal division is manifested in its built fabric and territories that have been adopted by predominant discourses of a fragmented society in Belfast; the unionist east and the nationalist west. The aim of the paper is to explore current approaches in planning contested spaces that have changed over time, leading to success in many cases. The argument is that divided cities, like Belfast, feature spatial images and memories of division that range from physical, clear-cut segregation to manifested actions of violence and have become influential representations in the community’s associative memory. While promoting notions of ‘re-imaging’ by current councils demonstrates a total erasure of the Troubles through cleansing its local collective memory, there yet remains an attempt to communicate a different tale of the city’s socio-economic past, to elaborate its supremacy for shaping future lived memories. Yet, planning Belfast’s contested areas is still suffering from a poor understanding of the context and its complexity against overambitious visions.
Resumo:
Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.
Resumo:
Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition.
Resumo:
Although long-term memory is thought to require a cellular program of gene expression and increased protein synthesis, the identity of proteins critical for associative memory is largely unknown. We used RNA fingerprinting to identify candidate memory-related genes (MRGs), which were up-regulated in the hippocampus of water maze-trained rats, a brain area that is critically involved in spatial learning. Two of the original 10 candidate genes implicated by RNA fingerprinting, the rat homolog of the ryanodine receptor type-2 and glutamate dehydrogenase (EC 1.4.1.3), were further investigated by Northern blot analysis, reverse transcription–PCR, and in situ hybridization and confirmed as MRGs with distinct temporal and regional expression. Successive RNA screening as illustrated here may help to reveal a spectrum of MRGs as they appear in distinct domains of memory storage.
Resumo:
La littérature suggère que le sommeil paradoxal joue un rôle dans l'intégration associative de la mémoire émotionnelle. De plus, les rêves en sommeil paradoxal, en particulier leur nature bizarre et émotionnelle, semblent refléter cette fonction associative et émotionnelle du sommeil paradoxal. La conséquence des cauchemars fréquents sur ce processus est inconnue, bien que le réveil provoqué par un cauchemar semble interférer avec les fonctions du sommeil paradoxal. Le premier objectif de cette thèse était de reproduire conceptuellement des recherches antérieures démontrant que le sommeil paradoxal permet un accès hyper-associatif à la mémoire. L'utilisation d'une sieste diurne nous a permis d'évaluer les effets du sommeil paradoxal, comparativement au sommeil lent et à l’éveil, sur la performance des participants à une tâche sémantique mesurant « associational breadth » (AB). Les résultats ont montré que seuls les sujets réveillés en sommeil paradoxal ont répondu avec des associations atypiques, ce qui suggère que le sommeil paradoxal est spécifique dans sa capacité à intégrer les traces de la mémoire émotionnelle (article 1). En outre, les rapports de rêve en sommeil paradoxal étaient plus bizarres que ceux en sommeil lent, et plus intenses émotionnellement ; ces attributs semblent refléter la nature associative et émotionnelle du sommeil paradoxal (article 2). Le deuxième objectif de la thèse était de préciser si et comment le traitement de la mémoire émotionnelle en sommeil paradoxal est altéré dans le Trouble de cauchemars fréquents (NM). En utilisant le même protocole, nos résultats ont montré que les participants NM avaient des résultats plus élevés avant une sieste, ce qui correspond aux observations antérieures voulant que les personnes souffrant de cauchemars soient plus créatives. Après le sommeil paradoxal, les deux groupes, NM et CTL, ont montré des changements similaires dans leur accès associatif, avec des résultats AB-négatif plus bas et AB-positif plus grands. Une semaine plus tard, seul les participants NM a maintenu ce changement dans leur réseau sémantique (article 3). Ces résultats suggèrent qu’au fil du temps, les cauchemars peuvent interférer avec l'intégration de la mémoire émotionnelle pendant le sommeil paradoxal. En ce qui concerne l'imagerie, les participants NM avaient plus de bizarrerie et plus d’émotion positive, mais pas négative, dans leurs rêveries (article 4). Ces attributs intensifiés suggèrent à nouveau que les participants NM sont plus imaginatifs et créatifs à l’éveil. Dans l'ensemble, les résultats confirment le rôle du sommeil paradoxal dans l'intégration associative de la mémoire émotionnelle. Cependant, nos résultats concernant le Trouble de cauchemars ne sont pas entièrement en accord avec les théories suggérant que les cauchemars sont dysfonctionnels. Le groupe NM a montré plus d’associativité émotionnelle, de même que plus d'imagerie positive et bizarre à l’éveil. Nous proposons donc une nouvelle théorie de sensibilité environnementale associée au Trouble de cauchemar, suggérant qu'une sensibilité accrue à une gamme de contextes environnementaux sous-tendrait les symptômes uniques et la richesse imaginative observés chez les personnes souffrant de cauchemars fréquents. Bien que davantage de recherches doivent être faites, il est possible que ces personnes puissent bénéficier e milieux favorables, et qu’elles puissent avoir un avantage adaptatif à l'égard de l'expression créative, ce qui est particulièrement pertinent lorsque l'on considère leur pronostic et les différents types de traitements.
Resumo:
La littérature suggère que le sommeil paradoxal joue un rôle dans l'intégration associative de la mémoire émotionnelle. De plus, les rêves en sommeil paradoxal, en particulier leur nature bizarre et émotionnelle, semblent refléter cette fonction associative et émotionnelle du sommeil paradoxal. La conséquence des cauchemars fréquents sur ce processus est inconnue, bien que le réveil provoqué par un cauchemar semble interférer avec les fonctions du sommeil paradoxal. Le premier objectif de cette thèse était de reproduire conceptuellement des recherches antérieures démontrant que le sommeil paradoxal permet un accès hyper-associatif à la mémoire. L'utilisation d'une sieste diurne nous a permis d'évaluer les effets du sommeil paradoxal, comparativement au sommeil lent et à l’éveil, sur la performance des participants à une tâche sémantique mesurant « associational breadth » (AB). Les résultats ont montré que seuls les sujets réveillés en sommeil paradoxal ont répondu avec des associations atypiques, ce qui suggère que le sommeil paradoxal est spécifique dans sa capacité à intégrer les traces de la mémoire émotionnelle (article 1). En outre, les rapports de rêve en sommeil paradoxal étaient plus bizarres que ceux en sommeil lent, et plus intenses émotionnellement ; ces attributs semblent refléter la nature associative et émotionnelle du sommeil paradoxal (article 2). Le deuxième objectif de la thèse était de préciser si et comment le traitement de la mémoire émotionnelle en sommeil paradoxal est altéré dans le Trouble de cauchemars fréquents (NM). En utilisant le même protocole, nos résultats ont montré que les participants NM avaient des résultats plus élevés avant une sieste, ce qui correspond aux observations antérieures voulant que les personnes souffrant de cauchemars soient plus créatives. Après le sommeil paradoxal, les deux groupes, NM et CTL, ont montré des changements similaires dans leur accès associatif, avec des résultats AB-négatif plus bas et AB-positif plus grands. Une semaine plus tard, seul les participants NM a maintenu ce changement dans leur réseau sémantique (article 3). Ces résultats suggèrent qu’au fil du temps, les cauchemars peuvent interférer avec l'intégration de la mémoire émotionnelle pendant le sommeil paradoxal. En ce qui concerne l'imagerie, les participants NM avaient plus de bizarrerie et plus d’émotion positive, mais pas négative, dans leurs rêveries (article 4). Ces attributs intensifiés suggèrent à nouveau que les participants NM sont plus imaginatifs et créatifs à l’éveil. Dans l'ensemble, les résultats confirment le rôle du sommeil paradoxal dans l'intégration associative de la mémoire émotionnelle. Cependant, nos résultats concernant le Trouble de cauchemars ne sont pas entièrement en accord avec les théories suggérant que les cauchemars sont dysfonctionnels. Le groupe NM a montré plus d’associativité émotionnelle, de même que plus d'imagerie positive et bizarre à l’éveil. Nous proposons donc une nouvelle théorie de sensibilité environnementale associée au Trouble de cauchemar, suggérant qu'une sensibilité accrue à une gamme de contextes environnementaux sous-tendrait les symptômes uniques et la richesse imaginative observés chez les personnes souffrant de cauchemars fréquents. Bien que davantage de recherches doivent être faites, il est possible que ces personnes puissent bénéficier e milieux favorables, et qu’elles puissent avoir un avantage adaptatif à l'égard de l'expression créative, ce qui est particulièrement pertinent lorsque l'on considère leur pronostic et les différents types de traitements.
Resumo:
How memory is organized within neural networks is a fundamental question in neuroscience. We used Pavlovian fear conditioning to study the discrete organization patterns of neurons activated in an associative memory paradigm. In Pavlovian fear conditioning a neutral stimulus, such as an auditory tone, is temporally paired with an aversive unconditioned stimulus (US), such as a foot shock...
Resumo:
We calculate analytically the average number of fixed points in the Hopfield model of associative memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addition of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the relative strength of the antisymmetric component is small, then its presence does not cause any substantial degradation of the quality of retrieval when the memory loading level is low. We also present results of numerical simulations which provide qualitative (as well as quantitative for some aspects) confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic calculation of the average number of fixed points yields the correct value for the typical number of fixed points.
Resumo:
In this paper we introduce a weighted complex networks model to investigate and recognize structures of patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional vector which however is insufficient to express the structural information. Thus, a number of methods are developed to extract the structural information, such as different feature extraction algorithms used in pre-processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed to a weighted complex network, whose topology represents the structure of that pattern. Based upon the training samples, we get several prototypal complex networks which could stand for the general structural characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it remains constant insensitive to the amount of training samples. We have discussed the interesting properties of the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in which we could compare the structural difference between each category. We have visualized these prototypal networks to show that their topology indeed represents the common characteristics of patterns. We have also shown that the asymmetric strength distribution in these prototypal networks brings high robustness for recognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in object recognition as well.
Resumo:
A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.
Resumo:
Boltzmann machines offer a new and exciting approach to automatic speech recognition, and provide a rigorous mathematical formalism for parallel computing arrays. In this paper we briefly summarize Boltzmann machine theory, and present results showing their ability to recognize both static and time-varying speech patterns. A machine with 2000 units was able to distinguish between the 11 steady-state vowels in English with an accuracy of 85%. The stability of the learning algorithm and methods of preprocessing and coding speech data before feeding it to the machine are also discussed. A new type of unit called a carry input unit, which involves a type of state-feedback, was developed for the processing of time-varying patterns and this was tested on a few short sentences. Use is made of the implications of recent work into associative memory, and the modelling of neural arrays to suggest a good configuration of Boltzmann machines for this sort of pattern recognition.
Resumo:
A parallel processing network derived from Kanerva's associative memory theory Kanerva 1984 is shown to be able to train rapidly on connected speech data and recognize further speech data with a label error rate of 0·68%. This modified Kanerva model can be trained substantially faster than other networks with comparable pattern discrimination properties. Kanerva presented his theory of a self-propagating search in 1984, and showed theoretically that large-scale versions of his model would have powerful pattern matching properties. This paper describes how the design for the modified Kanerva model is derived from Kanerva's original theory. Several designs are tested to discover which form may be implemented fastest while still maintaining versatile recognition performance. A method is developed to deal with the time varying nature of the speech signal by recognizing static patterns together with a fixed quantity of contextual information. In order to recognize speech features in different contexts it is necessary for a network to be able to model disjoint pattern classes. This type of modelling cannot be performed by a single layer of links. Network research was once held back by the inability of single-layer networks to solve this sort of problem, and the lack of a training algorithm for multi-layer networks. Rumelhart, Hinton & Williams 1985 provided one solution by demonstrating the "back propagation" training algorithm for multi-layer networks. A second alternative is used in the modified Kanerva model. A non-linear fixed transformation maps the pattern space into a space of higher dimensionality in which the speech features are linearly separable. A single-layer network may then be used to perform the recognition. The advantage of this solution over the other using multi-layer networks lies in the greater power and speed of the single-layer network training algorithm. © 1989.
Resumo:
The purpose of this study was to examine the cognitive and neural mechanism underlying the serial position effects using cognitive experiments and ERPs(the event related potentials), for 11 item lists in very short-term and the continuous-distractor paradigm with Chinese character. The results demonstrated that when the length of list was 11 Chinese character, and the presentation time, the item interval and the retention interval was 400ms, the primacy effect and recency effect belong to the associative memory and absolute memory respectively. The retrieval of the item at the primacy part depended mainly on the context cues, but the retrieval of the item at the recency part depended mainly on the memory trace. The same results was concluded in the continuous-distractor paradigm (the presentation time was 1sec, the item interval is 12sec, and the retention interval was 30sec). Cognitive results revealed the robust serial position effects in the continuous-distractor paradigm. The different retrieval process between items at the primacy part and items at the recency part of the serial position curve was found. The behavioral responses data of ERP illustrated that the responses for the prime and recent items differed neither in accuracy nor reaction time, the retrieval time for the items at the primacy part was longer than that for the items at the recency part. And the accuracy of retrieval for the primacy part item was lower than that for the recency part items. That meant the retrieval of primacy part items needed more cognitive processes. The recent items, compared with the prime items, evoked ERPs that were more positive, this enhanced positivity occurred in a positive component peaking around 360ms. And for the same retrieval direction (forward or backward), the significant positive component difference between the retrieval for prime items and the retrieval for recent items was found. But there was no significant difference between the forward and backward retrieval at both the primacy and recency part of the serial position curve. These revealed the two kind of retrieval (forward and backward) at the same part of the serial position curve belonged to the same property. These findings fit more closely with the notion of the distinct between the associative memory and the absolute memory.
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.