832 resultados para Assistive Technologies
Evaluation cortical bone elasticity in response to pulse power excitation using ultrasonic technique
Resumo:
This paper presents the ultrasonic velocity measurement method which investigates the possible effects of high voltage high frequency pulsed power on cortical bone material elasticity. Before applying a pulsed power signal on a live bone, it is essential to determine the safe parameters of pulsed power applied on bone non-destructively. Therefore, the possible changes in cortical bone material elasticity due to a specified pulsed power excitation have been investigated. A controllable positive buck-boost converter with adjustable output voltage and frequency has been used to generate high voltage pulses (500V magnitude at 10 KHz frequency). To determine bone elasticity, an ultrasonic velocity measurement has been conducted on two groups of control (unexposed to pulse power but in the same environmental condition) and cortical bone samples exposed to pulsed power. Young’s modulus of cortical bone samples have been determined and compared before and after applying the pulsed power signal. After applying the high voltage pulses, no significant variation in elastic property of cortical bone specimens was found compared to the control. The result shows that pulsed power with nominated parameters can be applied on cortical bone tissue without any considerable negative effect on elasticity of bone material.
Resumo:
A single subject longevity study is presented as a case study for the Medical Device Partnering Program (MDPP). The MDPP supports the development of cutting-edge medical devices and assistive technologies, through unique collaborations between researchers, industry, clinical end-users and government. The study aimed to identify what effect the innersole has on specific muscles that may influence stability and whether the innersole had any influence on gait. Three tests were conducted; a standard gait test, dynamic balance test and a standing balance test. Results from the kinematic analysis showed reduced variability in post testing results when compared to pre testing results. Reductions in muscle activation levels were also found across all tests. Further testing with a larger sample size is required to determine if these effects are due to the innersole.
Resumo:
Born in Germany, Dr Paul moved to Australia in 2009 to join UniSA’s Mawson Institute. He is currently the Director of ErgoLab, a research facility dedicated to enhancing the field of ergonomics – where products are designed to better fit the people that use them. Dr Paul plays a major role in ergonomic studies from automotive design, to assistive technologies for the elderly and disabled. He currently supervises several PhD students and regularly consults to industry.
Resumo:
Within HCI, aging is often viewed in terms of designing assistive technologies to improve the lives of older people, such as those who are suffering from frailty or memory loss. Our research adopts a very different approach, reframing the relationship in terms of wisdom, creativity and invention. We ran a series of workshops where groups of retirees, aged between early 60s and late 80s, used the MaKey MaKey inventor's toolkit. We asked them to think about inventing the future and suggest ideas for new technologies. Our findings showed that they not only rose to the challenge but also mastered the technology, collaborated intensely together while using it and freely and at length discussed their own, their family's and others' relationship with technology. We discuss the value of empowering people in this way and consider what else could be invented to enable more people to be involved in the design and use of creative technologies.
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
We describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples. © 2013 AIP Publishing LLC.
Resumo:
The paper focuses on opportunities for the integration of persons with different types of disabilities in the information technology (IT) labour market. Recent IT developments are identified and examined for their potentially harmful or beneficial effects on access to the IT labour market for persons with disabilities. The opportunities created by new job creation, new forms of training, teleworking, and the role of assistive technologies in facilitating workplace accommodations are briefly described. The focus is on new options for the design and implementation of computer-related assistive technologies in the workplace, and the impact of teleworking and the World Wide Web on employability and work-related training of persons with disabilities. The paper closes with a brief discussion of the roles that government agencies, business firms, labour unions, non-governmental organisations and education can play to help people with disabilities join the IT revolution and share its benefits.
Resumo:
The study examines various uses of computer technology in acquisition of information for visually impaired people. For this study 29 visually impaired persons took part in a survey about their experiences concerning acquisition of infomation and use of computers, especially with a screen magnification program, a speech synthesizer and a braille display. According to the responses, the evolution of computer technology offers an important possibility for visually impaired people to cope with everyday activities and interacting with the environment. Nevertheless, the functionality of assistive technology needs further development to become more usable and versatile. Since the challenges of independent observation of environment were emphasized in the survey, the study led into developing a portable text vision system called Tekstinäkö. Contrary to typical stand-alone applications, Tekstinäkö system was constructed by combining devices and programs that are readily available on consumer market. As the system operates, pictures are taken by a digital camera and instantly transmitted to a text recognition program in a laptop computer that talks out loud the text using a speech synthesizer. Visually impaired test users described that even unsure interpretations of the texts in the environment given by Tekstinäkö system are at least a welcome addition to complete perception of the environment. It became clear that even with a modest development work it is possible to bring new, useful and valuable methods to everyday life of disabled people. Unconventional production process of the system appeared to be efficient as well. Achieved results and the proposed working model offer one suggestion for giving enough attention to easily overlooked needs of the people with special abilities. ACM Computing Classification System (1998): K.4.2 Social Issues: Assistive technologies for persons with disabilities I.4.9 Image processing and computer vision: Applications Keywords: Visually impaired, computer-assisted, information, acquisition, assistive technology, computer, screen magnification program, speech synthesizer, braille display, survey, testing, text recognition, camera, text, perception, picture, environment, trasportation, guidance, independence, vision, disabled, blind, speech, synthesizer, braille, software engineering, programming, program, system, freeware, shareware, open source, Tekstinäkö, text vision, TopOCR, Autohotkey, computer engineering, computer science
Resumo:
In this work, a procedure is presented for the reconstruction of biological organs from image sequences obtained through CT-scan. Although commercial software, which can accomplish this task, are readily available, the procedure presented here needs only free software. The procedure has been applied to reconstruct a liver from the scan data available in literature. 3D biological organs obtained this way can be used for the finite element analysis of biological organs and this has been demonstrated by carrying out an FE analysis on the reconstructed liver.