130 resultados para Aspen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is substantial genetic variability in response to ozone amongst and within tree species. Aspen is a highly variable species with a wide range of responses to ozone. Aspen response to elevated O3 levels is being investigated at the Aspen FACE site near Rhinelander, WI where five aspen clones of varying O3 tolerance have been fumigated with elevated O3 over the past decade. In this study, we examined the physiological differences in two of the aspen clones that differed significantly in their O3 tolerance with 8L being tolerant and 42E being sensitive. Throughout the 2007 and 2008 growing seasons we periodically estimated instantaneous photosynthetic rates, ACi responses and light response curves. The results of our study suggest that aspen clone 8L’s tolerance is due in part to decreased stomatal conductance early in the season, which lowered ozone uptake. Later during the season O3 uptake was comparable for the two clones. Our results also suggest the response of Vcmax, TPU, Rd, Gm, light compensation point and quantum flux to elevated O3 did not differ significantly between the two clones. Ozone uptake is important for ozone tolerance in clone 8L early in the season but cannot explain late season tolerance. Photosynthetic parameters for the two clones were similar, so clone 8L’s ozone tolerance is not due to a more efficient photosynthetic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In subarctic Sweden, recent decadal colonization and expansion of aspen (Populus tremula L.) were recorded. Over the past 100 years, aspen became c. 16 times more abundant, mainly as a result of increased sexual regeneration. Moreover, aspen now reach tree-size (>2 m) at the alpine treeline, an ecotone that has been dominated by mountain birch (Betula pubescens ssp. czerepanovii) for at least the past 4000 years. We found that sexual regeneration in aspen probably occurred seven times or more within the last century. Whereas sexual regeneration occurred during moist years following a year with an exceptionally high June-July temperature, asexual regeneration was favored by warm and dry summers. Disturbance to the birch forest by cyclic moth population outbreaks was critical in aspen establishment in the subalpine area. At the treeline, aspen colonization was less determined by these moth outbreaks, and was mainly restricted by summer temperature. If summer warming persists, aspen spread may continue in subarctic Sweden, particularly at the treeline. However, changing disturbance regimes, future herbivore population dynamics and the responses of aspen's competitors birch and pine to a changing climate may result in different outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual basic application for Microsoft® Excel 2007 has been developed as a helpful tool to perform mass, energy, exergy and thermoeconomic (MHBT) calculations during the systematic analysis of energy processes simulated with Aspen Plus®. The application reads an Excel workbook containing three sheets with the matter, work and heat streams results of an Aspen Plus® simulation. The required information from the Aspen Plus® simulation and the algorithm/calculations of the application are described and applied to an Air Separation Unit (ASU). This application helps the designer when MHBT analyses are performed, as it increases the knowledge of the process simulated with Aspen Plus®. It’s a valuable tool not only because of the calculations performed, but also because it creates a new Excel workbook where the results and the formulae written on the cells are fully visible and editable. There is free access to the application and it has no protection allowing changes and improvements to be done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous sense suppression of a gene encoding lignin pathway caffeic acid O-methyltransferase (CAOMT) in the xylem of quaking aspen (Populus tremuloides Michx.) resulted in transgenic plants exhibiting novel phenotypes with either mottled or complete red-brown coloration in their woody stems. These phenotypes appeared in all independent transgenic lines regenerated with a sense CAOMT construct but were absent from all plants produced with antisense CAOMT. The CAOMT sense transgene expression was undetectable, and the endogenous CAOMT transcript levels and enzyme activity were reduced in the xylem of some transgenic lines. In contrast, the sense transgene conferred overexpression of CAOMT and significant CAOMT activity in all of the transgenic plants' leaves and sclerenchyma, where normally the expression of the endogenous CAOMT gene is negligible. Thus, our results support the notion that the occurrence of sense cosuppression depends on the degree of sequence homology and endogene expression. Furthermore, the suppression of CAOMT in the xylem resulted in the incorporation of a higher amount of coniferyl aldehyde residues into the lignin in the wood of the sense plants. Characterization of the lignins isolated from these transgenic plants revealed that a high amount of coniferyl aldehyde is the origin of the red-brown coloration—a phenotype correlated with CAOMT-deficient maize (Zea mays L.) brown-midrib mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This is the twelfth of the silvical reports being prepared by the Lake States Forest Experiment Station."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First published: London, 1829.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature: p. xxxii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Paper birch and aspen with understanding of Abies balsaoned, Acer saccharum, Betula hutea, etc.]