805 resultados para Asian dust storm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Widespread drought and record maximum temperatures in eastern Australia produced a large dust storm on 23 October, 2002 which traversed a large proportion of eastern Australia and engulfed communities along a 2000 km stretch of coastline from south of Sydney ( NSW) to north of Mackay ( Queensland). This event provided an opportunity for a study of the impacts of rural dust upon the air quality of four Australian cities. A simple model is used to predict dust concentrations, dust deposition rates and particle size characteristics of the airborne dust in the cities. The total dust load of the plume was 3.35 to 4.85 million tones, and assuming a ( conservative) plume height of 1500 m, 62 - 90% of this dust load was deposited in-transit to the coast. It is conservatively estimated that 3.5, 12.0, 2.1 and 1.7 kilotonnes of dust were deposited during the event in Sydney, Brisbane, Gladstone and Mackay, respectively. In the South East Queensland region, this deposition is equivalent to 40% of the total annual TSP emissions for the region. The event increased TSP, PM10 and PM2.5 concentrations and reduced the visibility beyond the health and amenity guidelines in the four cities. For example, the 24-h average PM10 concentrations in Brisbane and Mackay, were 161 and 475 mu g m(-3) respectively, compared with the Australian national ambient air quality standard of 50 mu g m(-3). The 24-h average PM2.5 concentration in Brisbane was 42 mu g m(-3), compared with the national advisory standard of 25 mu g m(-3). These rural dusts significantly increased PM10/TSP ratios and decreased PM2.5/PM10 ratios, indicating that most of the particles were between PM2.5 and PM10.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study is to evaluate the ability of a European chemistry transport model, `CHIMERE' driven by the US meteorological model MM5, in simulating aerosol concentrations dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A floating dust weather happened on March 11-12, 1995 over the Qingdao region. Its sources and throughput to the ocean were studied. The result indicated that the floating dust was caused by the dust storm that starred in northwestern China and developed in northern China. 21 x 10(6)t fine soil particles were carried to the ocean during the episode.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hourly winter weather of the Last Glacial Maximum (LGM) is simulated using the Community Climate Model version 3 (CCM3) on a globally resolved T170 (75 km) grid. Results are compared to a longer LGM climatological run with the same boundary conditions and monthly saves. Hourly-scale animations are used to enhance interpretations. The purpose of the study is to explore whether additional insights into ice age conditions can be gleaned by going beyond the standard employment of monthly average model statistics to infer ice age weather and climate. Results for both LGM runs indicate a decrease in North Atlantic and increase in North Pacific cyclogenesis. Storm trajectories react to the mechanical forcing of the Laurentide Ice Sheet, with Pacific storms tracking over middle Alaska and northern Canada, terminating in the Labrador Sea. This result is coincident with other model results in also showing a significant reduction in Greenland wintertime precipitation – a response supported by ice core evidence. Higher-temporal resolution puts in sharper focus the close tracking of Pacific storms along the west coast of North America. This response is consistent with increased poleward heat transport in the LGM climatological run and could help explain “early” glacial warming inferred in this region from proxy climate records. Additional analyses shows a large increase in central Asian surface gustiness that support observational inferences that upper-level winds associated with Asian- Pacific storms transported Asian dust to Greenland during the LGM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The redistribution of a finite amount of martian surface dust during global dust storms and in the intervening periods has been modelled in a dust lifting version of the UK Mars General Circulation Model. When using a constant, uniform threshold in the model’s wind stress lifting parameterisation and assuming an unlimited supply of surface dust, multiannual simulations displayed some variability in dust lifting activity from year to year, arising from internal variability manifested in surface wind stress, but dust storms were limited in size and formed within a relatively short seasonal window. Lifting thresholds were then allowed to vary at each model gridpoint, dependent on the rates of emission or deposition of dust. This enhanced interannual variability in dust storm magnitude and timing, such that model storms covered most of the observed ranges in size and initiation date within a single multiannual simulation. Peak storm magnitude in a given year was primarily determined by the availability of surface dust at a number of key sites in the southern hemisphere. The observed global dust storm (GDS) frequency of roughly one in every 3 years was approximately reproduced, but the model failed to generate these GDSs spontaneously in the southern hemisphere, where they have typically been observed to initiate. After several years of simulation, the surface threshold field—a proxy for net change in surface dust density—showed good qualitative agreement with the observed pattern of martian surface dust cover. The model produced a net northward cross-equatorial dust mass flux, which necessitated the addition of an artificial threshold decrease rate in order to allow the continued generation of dust storms over the course of a multiannual simulation. At standard model resolution, for the southward mass flux due to cross-equatorial flushing storms to offset the northward flux due to GDSs on a timescale of ∼3 years would require an increase in the former by a factor of 3–4. Results at higher model resolution and uncertainties in dust vertical profiles mean that quasi-periodic redistribution of dust on such a timescale nevertheless appears to be a plausible explanation for the observed GDS frequency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As one of the most important geological events in Cenozoic era, the uplift of the Tibetan Plateau (TP) has had profound influences on the Asian and global climate and environment evolution. During the past four decades, many scholars from China and abroad have studied climatic and environmental effects of the TP uplift by using a variety of geological records and paleoclimate numerical simulations. The existing research results enrich our understanding of the mechanisms of Asian monsoon changes and interior aridification, but so far there are still a lot of issues that need to be thought deeply and investigated further. This paper attempts to review the research on the influence of the TP uplift on the Asian monsoon-arid environment, summarize three types of numerical simulations including bulk-plateau uplift, phased uplift and sub-regional uplift, and especially to analyze regional differences in responses of climate and environment to different forms of tectonic uplifts. From previous modeling results, the land-sea distribution and the Himalayan uplift may have a large effect in the establishment and development of the South Asian monsoon. However, the formation and evolution of the monsoon in northern East Asia, the intensified dryness north of the TP and enhanced Asian dust cycle may be more closely related to the uplift of the main body, especially the northern part of the TP. In this review, we also discuss relative roles of the TP uplift and other impact factors, origins of the South Asian monsoon and East Asian monsoon, feedback effects and nonlinear responses of climatic and environmental changes to the plateau uplift. Finally, we make comparisons between numerical simulations and geological records, discuss their uncertainties, and highlight some problems worthy of further studying.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[1] We present a model of the dust cycle that successfully predicts dust emissions as determined by land surface properties, monthly vegetation and snow cover, and 6-hourly surface wind speeds for the years 1982–1993. The model takes account of the role of dry lake beds as preferential source areas for dust emission. The occurrence of these preferential sources is determined by a water routing and storage model. The dust source scheme also explicitly takes into account the role of vegetation type as well as monthly vegetation cover. Dust transport is computed using assimilated winds for the years 1987–1990. Deposition of dust occurs through dry and wet deposition, where subcloud scavenging is calculated using assimilated precipitation fields. Comparison of simulated patterns of atmospheric dust loading with the Total Ozone Mapping Spectrometer satellite absorbing aerosol index shows that the model produces realistic results from daily to interannual timescales. The magnitude of dust deposition agrees well with sediment flux data from marine sites. Emission of submicron dust from preferential source areas are required for the computation of a realistic dust optical thickness. Sensitivity studies show that Asian dust source strengths are particularly sensitive to the seasonality of vegetation cover.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eolian grain size and flux were measured on samples from 11 Arabian Sea sediment traps deployed 200-1250 km offshore. The timing of increased grain size is coincident with the onset of strong summer monsoon winds and dust storm activity over the Arabian Peninsula and Middle East. Data spanning a full annual cycle show that eolian grain size is highly correlated with barometric pressure (r=-0.91) and wind speed (r=0.84), enabling calibration of the downcore record in terms of these primary meteorological variables. Eolian flux is highly correlated with organic carbon flux (r=0.80); both increase 6-8 weeks after the grain size increase and summer monsoon onset. This lag, and the low correlation between eolian grain size and eolian flux (r=0.36), likely result from the differential sinking rates of large and small dust particles in the surface waters as well as biological scavenging associated with monsoon-induced productivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are subchondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), -4.70 < epsilon-Hf < +16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, epsilon-Hf= =0.78 epsilon-Nd = +5.66 (n =22, R**2 =0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in epsilon-Hf of Asian dust exceeds that predicted on the basis of corresponding epsilon-Nd values (34.76 epsilon-Hf < +2.5; -10.96< epsilon-Nd <-10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (epsilon-Hf =+8.6 and +10.3, epsilon-Nd =39.5 and 39.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World's major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.