113 resultados para Ascidian Herdmania-momus
Resumo:
Three new amino alcohols presumably deriving from L-alanine were isolated from the tropical marine sponge Haliclona n. sp. and characterized by 2D NMR, while a fourth amino alcohol was characterized as an acetamide derivative. Relative stereochemistry was deduced from the NMR characteristics of oxazolidinone derivatives and absolute stereochemistry secured by preparation and analysis of an MPA ester. The amino alcohol fraction from Haliclona n. sp, acts as an antifungal agent and inhibits the development of larvae of the ascidian Herdmania curvata.
Resumo:
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.
Resumo:
Analysis of the structure of the urochordate Herdmania curvata ribosomal DNA intergenic spacer (IGS) and its role in transcription initiation and termination suggests that rRNA gene regulation in this chordate differs from that in vertebrates. A cloned H, curvata IGS is 1881 bp and composed predominantly of two classes of similar repeat sequences that largely alternate in a tandem array. Southern blot hybridization demonstrates that the IGS length variation within an individual and population is largely the result of changes in internal repeat number. Nuclease S1 mapping and primer extension analyses suggest that there are two transcription initiation sites at the 3' end of the most 3' repetitive element; these sites are 6 nucleotides apart. Unlike mouse, Xenopus, and Drosophila, there is no evidence of transcription starting elsewhere in the IGS. Most sequence differences between the promoter repeat and the other internal repeats are in the vicinity of the putative initiation sites. As in Drosophila, nuclease S1 mapping of transcription termination sites suggest that there is not a definitive stop site and a majority of the pre-rRNAs read through a substantial portion of the IGS. Some transcription appears to proceed completely through the promoter repeat into the adjacent rDNA unit. Analysis of oocyte RNA by reverse transcription-polymerase chain reaction (RT-PCR) confirms that readthrough transcription into the adjacent rDNA unit is occurring in some small IGS length variants; there is no evidence of complete readthrough of IGSs larger than 1.0 kb.
Resumo:
It is becoming widely recognized that extending the larval period of marine invertebrates, especially of species with non-feeding larvae, can affect post-larval performance. As these carry-over effects are presumed to be caused by the depletion of larval energy reserves, we predicted that the level of larval activity would also affect post-larval performance. This prediction was tested with the cosmopolitan colonial ascidian Diplosoma listerianum in field experiments in southern Australia. Diplosoma larvae, brooded in the parent colony, are competent to settle immediately after spawning, and they remain competent to metamorphose for > 15 h. Some larvae were induced to metamorphose 0 to 6 h after release, whilst others were induced to swim actively by alternating light and dark periods for up to 3 h prior to metamorphosis. Juvenile colonies were then transplanted to a subtidal field site in Port Phillip Bay and left to grow for up to 3 wk. Extending the larval period and increasing the amount of swimming both produced carry-over effects on post-larval performance. Colonies survived at different rates among experiments, but larval experience did not affect survival rates. Delays in metamorphosis and increased swimming activity did, however, reduce colony growth rates dramatically, resulting in 50% fewer zooids per colony. Moreover, such colonies produced initial zooids with smaller feeding structures, with the width of branchial baskets reduced by 10 to 15%. These differences in branchial basket size persisted and were still apparent in newly budded zooids 3 wk after metamorphosis. Our results suggest that, for D. listerianum, larval maintenance, swimming, and metamorphosis all use energy from a common pool, and increases in the allocation to maintenance or swimming come at the expense of post-larval performance.
Resumo:
Variation in larval quality has been shown to strongly affect the post-metamorphic performance of a wide range of marine invertebrate species. Extending the larval period of non-feeding larvae strongly affects post-metamorphic survival and growth in a range of species. These 'carry-over' effects are assumed to be due to changes in larval energetic reserves but direct tests are surprisingly rare. Here, we examine the energetic costs ( relative to the costs of metamorphosis) of extending the larval period of the colonial ascidian Diplosoma listerianum. We also manipulated larval activity levels and compared the energy consumption rates of swimming larvae and inactive larvae. Larval swimming was, energetically, very costly relative to either metamorphosis or merely extending the larval period. At least 25% of the larval energetic reserves are available for larval swimming but metamorphosis was relatively inexpensive in this species and larval reserves can be used for post-metamorphic growth. The carry-over effects previously observed in this species appear to be nutritionally mediated and even short (< 3 h) periods of larval swimming can significantly deplete larval energy reserves.
Characterisation of novel epidermis-specific genes transiently expressed during ascidian development
Resumo:
We have investigated molecular mechanisms of the embryonic development of an ascidian, a primitive chordate which shares features of both invertebrates and vertebrates, with a view to identifying genes involved in development and metamorphosis, We isolated 12 partial cDNA sequences which were expressed in a stage-specific manner using differential display, We report here the isolation of a full-length cDNA sequence for one of these genes which was specifically expressed during the tailbud and larval stages of ascidian development, This cDNA, 1213 bp in length, is predicted to encode a protein of 337 amino acids containing four epidermal growth factor (EGF)-like repeats and three novel cysteine-rich repeats, Characterization of its spatial expression pattern by in situ hybridisation in late tailbud and larval embryos demonstrated strong expression localised throughout the papillae and anteriormost trunk and weaker expression in the epidermis of the remainder of the embryo, As recent evidence indicates that the signal for metamorphosis originates in the anterior trunk region, these results suggest that this gene may have a role in signalling the initiation of metamorphosis. (C) 1997 Wiley-Liss, Inc.
Resumo:
Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species.