975 resultados para Army-McCarthy controversy, 1954


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Title also given as: Beach erosion control report on cooperative study of Pacific coast line of the State of California.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"September 1985."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reprint. Originally published: Richmond : C. McCarthy, 1882.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Sponsored by the Conservation Foundation."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rodman Reservoir, an impoundment on the Ocklawaha River in north central Florida, is a last remnant of the Cross-Florida Barge Canal (CFBC). The canal, conceived in the 1820's, was designed by the U.S. Army Corps of Engineers (USACE) to shorten shipping lanes between the Fulf ports and the Atlantic coast. Opposition to CFBC by Florida's young environmental movement led to a half in construction of the CFBC in 1971, but decommissioning of the already-constructed Rodman dam and the reservoir behind it has been mired in controversy every since.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,000 piece of memoir about Iceland

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identity-Based (IB) cryptography is a rapidly emerging approach to public-key cryptography that does not require principals to pre-compute key pairs and obtain certificates for their public keys— instead, public keys can be arbitrary identifiers such as email addresses, while private keys are derived at any time by a trusted private key generator upon request by the designated principals. Despite the flurry of recent results on IB encryption and signature, some questions regarding the security and efficiency of practicing IB encryption (IBE) and signature (IBS) as a joint IB signature/encryption (IBSE) scheme with a common set of parameters and keys, remain unanswered. We first propose a stringent security model for IBSE schemes. We require the usual strong security properties of: (for confidentiality) indistinguishability against adaptive chosen-ciphertext attacks, and (for nonrepudiation) existential unforgeability against chosen-message insider attacks. In addition, to ensure as strong as possible ciphertext armoring, we also ask (for anonymity) that authorship not be transmitted in the clear, and (for unlinkability) that it remain unverifiable by anyone except (for authentication) by the legitimate recipient alone. We then present an efficient IBSE construction, based on bilinear pairings, that satisfies all these security requirements, and yet is as compact as pairing-based IBE and IBS in isolation. Our scheme is secure, compact, fast and practical, offers detachable signatures, and supports multirecipient encryption with signature sharing for maximum scalability.