23 resultados para Arithmetics
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
Mathematics in Defence 2011 Abstract. We review transreal arithmetic and present transcomplex arithmetic. These arithmetics have no exceptions. This leads to incremental improvements in computer hardware and software. For example, the range of real numbers, encoded by floating-point bits, is doubled when all of the Not-a-Number(NaN) states, in IEEE 754 arithmetic, are replaced with real numbers. The task of programming such systems is simplified and made safer by discarding the unordered relational operator,leaving only the operators less-than, equal-to, and greater than. The advantages of using a transarithmetic in a computation, or transcomputation as we prefer to call it, may be had by making small changes to compilers and processor designs. However, radical change is possible by exploiting the reliability of transcomputations to make pipelined dataflow machines with a large number of cores. Our initial designs are for a machine with order one million cores. Such a machine can complete the execution of multiple in-line programs each clock tick
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este estudo buscou comparar o desempenho de alunos da primeira série do ensino fundamental (Grupos 1F e 1IN) e alunos da segunda série do ensino fundamental (Grupos 2F e 2IN), testados no início (IN) ou final do ano letivo (F), na solução de problemas matemáticos. Trinta e oito alunos divididos em 4 grupos foram submetidos ao mesmo procedimento, que consistia da apresentação oral de problemas matemáticos. Após cada resposta, o aluno era questionado sobre a forma de solução. Os dados foram analisados quanto ao índice de acertos e às estratégias empregadas. Os acertos e o uso da escrita foram maiores no Grupo 2F e menores no Grupo 1IN. Os grupos 2F e 1F apresentaram uso mais freqüente de algoritmos. Os resultados também indicam melhor desempenho do Grupo 1F em relação ao Grupo 2IN, sugerindo que a história de freqüência recente à escola favorece o desempenho dos alunos.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.
Resumo:
Este trabalho propõe um estudo sobre códigos numéricos e detecção de erros de transmissão. Os códigos são de uso rotineiro, sua estrutura é simples e motiva alguns aspectos da teoria de divisibilidade, de uma forma diferenciada. A pesquisa trata da estrutura de alguns códigos e, com cálculos simples, detecta-se a presença de um erro de transmissão. Por fim, fazemos uma proposta pedagógica, a qual almeja fomentar hábitos de pesquisa no aprendiz e, especialmente, colocar a Matemática como uma ciência do seu cotidiano.