95 resultados para Argillaceous Laterite
Resumo:
The spatial distributions of non-reactive natural tracers (anions, stable water isotopes, noble gases) in pore water of clay-rich formations were studied at nine sites. Regular curved profiles were identified in most cases. Transport modeling considering diffusion, advection and available constraints on the paleo-hydrogeological evolution indicates generally that diffusion alone can explain the observations, whereas a marked advective component would distort the profiles and so is not consistent with the data.
Resumo:
The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363–405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12–1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES = 30–51%). Therefore, Ce fractionation from other REE is attributed to a Ce oxidation and precipitation potentially assisted by oxyhydroxide scavenging. In the C-horizon, Ce(III) and Ce(IV) are mainly distributed in REE-minerals of the rhabdophane group found in pores and cracks. The similarity between the Ce(III) proportion of rhabdophane grains (XCe(III)-XANES = 74–89%) with that of the bedrock (BR-XCe(III)-XANES = 79%) suggests no significant fractionation of Ce(III) and Ce(IV) between solution and mineral during the successive stages of primary REE-mineral alteration, transport in solution and secondary precipitation in the incipient stages of weathering. Overall, our novel spectroscopic approach shows that Ce is not necessarily oxidized nor fractionated from other REE during weathering in lateritic conditions. This implies that like Ce(III), Ce(IV) can be mobilized in aqueous fluids during weathering, possibly thanks to complexation with organic molecules, and can precipitate together with Ce(III) in secondary REE-bearing minerals. The corollary is that (paleo)redox reconstructions in soils and/or sediments based on Ce-anomaly in weathered rocks or minerals must be interpreted with caution.
Resumo:
Mineral assemblages of DSDP Holes 436 and 438A and the upper section of Hole 439 (871.5-911.0 m sub-bottom) resemble each other and are composed of montmorillonite (probably a small portion of montmorillonite/illite mixed-layer clays), illite, chlorite, kaolinite, quartz, plagioclase, hornblende, calcite, dolomite, siderite, gypsum, pyrite, and halite. In the middle section of Hole 439 (933.5-1041.0 m), clinoptilolite is also found. In the lower section of Hole 439 (1077.5-1150.0 m), montmorillonite is not confirmed, and clinoptilolite and mixed-layer illite are found. These assemblages, which also contain detrital kaolinite, are generally found in sediments from brackish-water environments. At Site 439, more than 1000 meters of sediment might have been removed by erosion at the base.
Resumo:
The geochemistry of an argillaceous rock sequence from a deep borehole in NE-Switzerland was investigated. The focus was to constrain the porewater chemistry in low permeability Jurassic rocks comprising the Liassic, the Opalinus Clay formation, the 'Brown Dogger' unit and the Effingen Member (Malm). A multi-method approach including mineralogical analysis, aqueous and Ni-ethylenediamine extraction, squeezing tests and pCO(2) measurements as well as geochemical modelling was applied for this purpose. A consistent dataset was obtained with regard to the main solutes in the porewaters. A fairly constant anion-accessible porosity of similar to 50% of the total porosity was deduced for all analysed samples which displayed variable clay-mineral contents. Sulphate concentrations were shown to be constrained by a sulphate-bearing phase, presumably by celestite or a Sr-Ba sulphate. Application of a simple equilibrium model, including cation exchange reactions, calcite and celestite equilibrium showed good agreement with squeezing data, indicating the suitability of the modelling approach to simulate porewater chemistry in the studied argillaceous rocks. The modelling highlighted the importance of correct determination of the exchangeable cation population. The analysis corroborates that squeezing of the studied rocks is a viable and efficient way to sample porewater.
Resumo:
"Issued December 1962."
Resumo:
Nickel isotope ratios were measured in ores, fly ash, slags and FeNi samples from two metallurgical plants located in the Goiás State, Brazil (Barro Alto, Niquelândia). This allowed investigating the mass-dependent fractionation of Ni isotopes during the Ni-laterite ore smelting and refining. Feeding material exhibits a large range of δ60Ni values (from 0.02 ± 0.10 ‰ to 0.20 ± 0.05 ‰, n=7), explained by the diversity of Ni-bearing phases, and the average of δ60Nifeeding materials was found equal to 0.08 ± 0.08‰ (2SD, n=7). Both δ60Ni values of fly ash (δ60Ni = 0.07 ± 0.07‰, n=10) and final FeNi produced (0.05 ± 0.02 ‰, n=2) were not significantly different from the feeding materials ones. These values are consistent with the very high production yield of the factories. However, smelting slags present the heaviest δ60Ni values of all the smelter samples, with δ60Ni ranging from 0.11 ± 0.05 ‰ to 0.27 ± 0.05 ‰ (n=8). Soils were also collected near and far from the Niquelândia metallurgical plant, to evaluate the potential of Ni isotopes for tracing the natural vs anthropogenic Ni in soils. The Ni isotopic composition of the non-impacted topsoils developed on ultramafic rocks ranges from -0.26 ± 0.09 ‰ to -0.04 ± 0.05 ‰ (n=20). On the contrary, the Ni isotopic composition of the non-ultramafic topsoils, collected close to the plant, exhibit a large variation of δ60Ni, ranging from -0.19 ± 0.13 ‰ up to 0.10 ± 0.05 ‰ (n=4). This slight but significant enrichment in heavy isotopes highlight the potential impact of smelting activity in the surrounding area, as well as the potential of Ni isotopes for discerning anthropogenic samples (heavier δ60Ni values) from natural ones (lighter δ60Ni values). However, given the global range of published δ60Ni values (from -1.03 to 2.5 ‰) and more particularly those associated to natural weathering of ultramafic rocks (from -0.61 to 0.32‰), the use of Ni isotopes for tracing environmental contamination from smelters will remain challenging.
Resumo:
Over a seven year period from 1991 to 1997, 22 species of tiger beetles, representing nine genera, were recorded near Manaus, Brazil. In the Whitewaterfloodplains along the Rio Solimões-Amazonas (Ilha de Marchantaria), three diurnal species inhabit inundation forests and six species (two diurnal, four nocturnal) live in open areas. Data on their natural history and adaptation to living conditions in floodplains are presented. Fifteen species were located on non-flooded uplands (Reserva Florestal A. Ducke). Five diurnal species inhabit the forest floor, two species are canopy dwellers, and eight species (seven diurnal, one nocturnal) live in open areas on whitesand or laterite. Only one species, Pentacomia lacordairei, was found in both floodplain and upland forests. A key to the larvae of tiger beetle genera located near Manaus is presented.
Resumo:
Abundant veins filled by calcite, celestite and pyrite were found in the core of a 719 m deep borehole drilled in Oftringen near Olten, located in the north-western Molasse basin, close to the thrust of the Folded Jura. Host rocks are calcareous marl, argillaceous limestone and limestone of the Dogger and Malm. The delta O-18 values of vein calcite are lower than in host rock carbonate and, together with microthermometric data from fluid inclusions in vein calcite, indicate precipitation from a seawater-dominated fluid at average temperatures of 56-68A degrees C. Such temperatures were reached at the time of maximum burial of the sedimentary pile in the late Miocene. The depth profile of delta C-13 and Sr-87/Sr-86 values and Sr content of both whole-rock carbonate and vein calcite show marked trends towards negative delta C-13, high Sr-87/Sr-86, and low Sr content in the uppermost 50-150 m of the Jurassic profile (upper Oxfordian). The Sr-87/Sr-86 of vein minerals is generally higher than that of host rock carbonate, up to very high values corresponding to Burdigalian seawater (Upper Marine Molasse, Miocene), which represents the last marine incursion in the region. No evidence for internally derived radiogenic Sr (clay minerals) has been found and so an external source is required. S and O isotope composition of vein celestite and pyrite can be explained by bacterial reduction of Miocene seawater sulphate. The available data set suggests the vein mineralization precipitated from descending Burdigalian seawater and not from a fluid originating in the underlying Triassic evaporites.
Resumo:
Ironstones or petroplinthites are common materials in soils under humid tropical climate, generally defined as the result of Fe oxide accumulation in areas where the water table oscillates, and may exhibit considerable morphological variability. The aim of this study was to examine the internal structure and porosity of an ironstone fragment from a Petroferric Acrudox in Minas Gerais, Brazil, by computed tomography (CT) and conventional techniques. The sample analyzed had total porosity of 59.5 %, with large macropores in the form of tubular channels and irregular vughs, the latter with variable degrees of infilling by material released from the ironstone walls or the soil matrix. The CT scan also showed that the ironstone has wide variation in the density of the solid phase, most likely due to higher concentrations or thick intergrowths of hematite and magnetite/maghemite, especially in its outer rims. The implications of these results for water retention and soil formation in ironstone environments are briefly discussed.
Resumo:
The discussion presented below concerns the section on "Unidentified Cement-Aggregate Reactions" in which mention is made of concrete deterioration related to argillaceous dolomitic limestone aggregates. A considerable amount of research has been conducted on carbonate aggregate-cement reactions as part of the general study on the suitability of carbonate rocks as concrete aggregate which inadvertently did not reach the authors in time to be incorporated in their paper. These reactions which occur in response to the alkaline environment of concrete are not typical alkali-aggregate reactions associated with siliceous aggregates such as opaline cherts, volcanic glasses and etc. The reactions are associated with certain carbonate aggregates whose service records indicate deleterious performance in concrete has occurred. It is my purpose to review briefly carbonate aggregate research conducted at Iowa State University and present some new data on the problem of carbonate aggregate-cement paste reactions.
Resumo:
The present work attempts to trace the variation in the physical and chemical behavior of ilmenite, since its release from country rocks and subsequent transportation to the coast through the progressive weathering environments of laterite, sedimentary rocks, rivers and estuarine systems. Since the hinterland of the study area consists of crystalline and sedimentary rocks and their weathered forms (laterites), the contribution of each lithological system to the beach placer is attempted. The results of the study show that the most magnetic fraction contains more content of altered phases than the relatively unweathered fractions. The fractions separated above 0.35A define a high grade of ilmenite ore enriched in Ti content. The lattice volume generally decreases with alteration. The magnetic studies revels that the Chavara ilmenite are found to be made up to low magnetic crops with about 46% of the bulk ilmenite constituted by fractions separated at above 0.35A. In the Manavalakurichi ilmenite on the other hand, around 91% of the beach ilmenite is made of fractions separated at or below 0.3A
Resumo:
Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.
Resumo:
Concrete is a universal material in the construction industry. With natural resources like sand and aggregate, fast depleting, it is time to look for alternate materials to substitute these in the process of making concrete. There are instances like exposure to solar radiation, fire, furnaces, and nuclear reactor vessels, special applications like missile launching pads etc., where concrete is exposed to temperature variations In this research work, an attempt has been made to understand the behaviour of concrete when weathered laterite aggregate is used in both conventional and self compacting normal strength concrete. The study has been extended to understand the thermal behaviour of both types of laterised concretes and to check suitability as a fire protection material. A systematic study of laterised concrete considering parameters like source of laterite aggregate, grades of Ordinary Portland Cement (OPC) and types of supplementary cementitious materials (fly ash and GGBFS) has been carried out to arrive at a feasible combination of various ingredients in laterised concrete. A mix design methodology has been proposed for making normal strength laterised self compacting concrete based on trial mixes and the same has also been validated. The physical and mechanical properties of laterised concretes have been studied with respect to different variables like exposure temperature (200°C, 400°C and 600°C) and cooling environment (air cooled and water cooled). The behaviour of ferrocement elements with laterised self compacting concrete has also been studied by varying the cover to mesh reinforcement (10mm to 50mm at an interval of 10mm), exposure temperature and cooling environment.