989 resultados para Arabian Sea mini warm pool


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records of total organic carbon (TOC) and C37 alkenones were used as indicators for past primary productivity in the western and eastern Arabian Sea. Data from GeoB 3005, an open ocean site in the western Arabian Sea upwelling area, are compared with similar records of GeoB 3007 from the Owen Ridge, Ocean Drilling Program (ODP) Site 723 from the continental margin off Oman and MD 900963 from the eastern Arabian Sea. TOC/C37 alkenone records together with other proxies used to reconstruct upwelling intensity, indicate periods of high productivity in tune with precessional forcing all over the Arabian Sea. Based on their phase-relationship to variations in boreal summer insolation they can be divided into three groups. In the western Arabian Sea the precession-related phasing is different between productivity proxies and those for summer monsoon wind strength and upwelling intensity. TOC and C37 alkenone records from the western Arabian Sea lag the other monsoonal indicators by about 5 kyr, but lead productivity indicators from the eastern Arabian Sea by 3 kyr. Based on the differences in phase relationships associated with the precessional cycling between productivity and monsoonal proxies in the western Arabian Sea it is proposed that the TOC/C37 alkenone signal in the western Arabian Sea document a combined signal of moderate SW monsoon winds and of strengthened and prolonged NE monsoon winds. In the eastern Arabian Sea the phasing hints to coincidence between maximum productivity and stronger NE monsoon winds associated with precession-related maxima in ice volume. In contrast, variations in paleoproductivity at site GeoB 3007 from the Owen Ridge indicate productivity maxima during glacial substages 8.2, 6.2 and 2.2, whereas precessionrelated changes are of only minor importance at this location. The results of frequency analyses confirm that productivity at site GeoB 3007 responds predominantly to glacialinterglacial climate changes, while site GeoB 3005 from the open ocean upwelling region near the Gulf of Aden is dominated by precessional insolation. A possible explanation for the pattern revealed at the Owen Ridge is the periodic NW-SE displacement of the Findlater Jet axis, which separates the region of open ocean upwelling to the northwest from downwelling to the southeast ofthe jet. The carbon isotopes of planktic foraminifera reflect nutrient related d13C variations of dissolved inorganic carbon. The difference between the planktic foraminifera Globigerinoides ruber (w), living in the upper 50 m of the water column, and the deeper Iiving Neogloboquadrina dutertrei (Delta d13Cr-d) of core GeoB 3005 displays nutrient variations in the upwelling area near the Gulf of Aden. The results of cross-spectral analyses between Deltad13Cr-d of GeoB 3005 and proxies for SW monsoon intensity indicate, too, a dissociation of productivity from monsoonal upwelling intensity. Instead, productivity depends mainly on the availability of nutrients, while upwelling intensity of sub-surface water masses seems to be of only secondary importance. Additionally, sea surface temperatures (SSTs) were reconstructed using the unsaturation ratio of C37 alkenones. Alkenone SSTs reflect annual mean temperatures rather than explicitly the season of upwelling. This is evident from alkenone SSTs in a transect of surface sediments extending from the inner Gulf of Aden into the western Arabian Sea. The alkenone-derived SST records of GeoB 3005 from the open ocean upwelling region near the Gulf of Aden and GeoB 3007 from the Owen Ridge reveal similar variations with high SSTs during interglacial and low SSTs during glacial periods. The glacial marine oxygen isotope stage (MIS) 6 remains relatively warm and was not as cold as MIS 3 to 4 and 8 according to the alkenone SST. Similar variation-patterns were reconstructed in the coastal upwelling area off Oman for ODP Site 723 as weIl as in the eastern Arabian Sea for MD 900963, where upwelling is not as pronounced as in the western Arabian Sea. Spectral-analyses indicate that SST changes are in good agreement with the modulation of low-latitude precessional insolation changes by eccentricity. However, they do not show the pronounced cydicity in the precessional frequency band, which is characteristic for variations in paleoproductivity. Although the overall variation pattern is very similar, a dose comparison between the western (GeoB 3005) and the eastern Arabian Sea (MD 900963) shows larger differences between both sites during cold intervals than during periods of warm SSTs. This is attributed to a more effective cooling of surface waters in the western Arabian Sea by prolonged NE monsoon winds during times of expanded Northern Hemisphere ice-sheets, thereby lowering the annual mean SSTs stronger than in the eastern Arabian Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea sediments of two cores from the western (TY93-929/P) and the southeastern (MD900963) Arabian Sea were used to study the variations of the Indian monsoon during previous climatic cycles. Core TY93-929/P was located between the SW monsoon driven upwelling centres off Somalia and Oman, which are characterized by large seasonal sea surface temperature (SST) and particle flux changes. By contrast, core MD900963, was situated near the Maldives platform, an equatorial ocean site with a rather small SST seasonality (less than 2°C). For both cores we have reconstructed SST variations by means of the unsaturation ratio of C37 alkenones, which is compared with the delta18O records established on planktonic foraminifera. In general, the SST records follow the delta18O variations, with an SST maximum during oxygen isotope stage 5.5 (the Last Interglacial at about 120-130 kyr) and a broad SST minimum during isotope stage 4 and 3.3 (approximately 40-50 kyr). The SST difference between the Holocene and the Last Glacial Maximum (LGM) is of the order of 2°C. In both cores the SSTs during isotope stage 6 are distinctly higher by 1-2°C than the cold SST minima during the last glacial cycle (LGM and stage 3). To reconstruct qualitatively the past productivity variations for the two cores, we used the concentrations and fluxes of alkenones and organic carbon, together with a productivity index based on coccolith species (Florisphaera profunda relative abundance). Within each core, there is a general agreement between the different palaeoproductivity proxies. In the southeastern Arabian Sea (core MD900963), glacial stages correspond to relatively high productivity, whereas warm interstadials coincide with low productivity. All time series of productivity proxies are dominated by a cyclicity of about 21-23 kyr, which corresponds to the insolation precessional cycle. A hypothesis could be that the NE monsoon winds were stronger during the glacial stages, which induced deepening of the surface mixed layer and injection of nutrients to the euphotic zone. By contrast, the records are more complicated in the upwelling region of the western Arabian Sea (core TY93-929/P). This is partly due to large changes in the sedimentation rates, which were higher during specific periods (isotope stages 6, 5.4, 5.2, 3 and 2). Unlike core MD900963, no simple relationship emerges from the comparison between the delta18O stratigraphy and productivity records. The greater complexity observed for core TY93-929/P could be the result of the superimposition of different patterns of productivity fluctuations for the two monsoon seasons, the SW monsoon being enhanced during interglacial periods, whereas the NE monsoon was increased during glacial intervals. A similar line of reasoning also could help explain the SST records by the superimposition of variations of three components: global atmospheric temperature, and SW and NE monsoon dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigate phosphorus (P) and iron (Fe) cycling in sediments along a depth transect from within to well below the oxygen minimum zone (OMZ) in the northern Arabian Sea (Murray Ridge). Pore-water and solid-phase analyses show that authigenic formation of calcium phosphate minerals (Ca-P) is largely restricted to where the OMZ intersects the seafloor topography, likely due to higher depositional fluxes of reactive P. Nonetheless, increased ratios of organic carbon to organic P (Corg/Porg) and to total reactive P (Corg/Preactive) in surface sediments indicate that the overall burial efficiency of P relative to Corg decreases under the low bottom water oxygen concentrations (BWO) in the OMZ. The relatively constant Fe/Al ratio in surface sediments along the depth transect suggest that corresponding changes in Fe burial are limited. Sedimentary pyrite contents are low throughout the ~25 cm sediment cores at most stations, as commonly observed in the Arabian Sea OMZ. However, pyrite is an important sink for reactive Fe at one station in the OMZ. A reactive transport model (RTM) was applied to quantitatively investigate P and Fe diagenesis at an intermediate station at the lower boundary of the OMZ (bottom water O2: ~14 µmol/L). The RTM results contrast with earlier findings in showing that Fe redox cycling can control authigenic apatite formation and P burial in Arabian Sea sediment. In addition, results suggest that a large fraction of the sedimentary Ca-P is not authigenic, but is instead deposited from the water column and buried. Dust is likely a major source of this Ca-P. Inclusion of the unreactive Ca-P pool in the Corg/P ratio leads to an overestimation of the burial efficiency of reactive P relative to Corg along the depth transect. Moreover, the unreactive Ca-P accounts for ~85% of total Ca-P burial. In general, our results reveal large differences in P and Fe chemistry between stations in the OMZ, indicating dynamic sedimentary conditions under these oxygen-depleted waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive measurements of aerosol radiative and microphysical properties were made at an island location, Minicoy (8.3 degrees N, 73.04 degrees E) in the southern Arabian Sea. A large variability in aerosol characteristics associated with changes in air mass and precipitation characteristics was observed. Six distinct transport pathways were identified on the basis of cluster analysis. The Indo-Gangetic Plain, along with the northern Arabian Sea and west Asia (NWA), was identified to be the region having the highest potential for aerosol mass loading at the island. This estimate is based on the concentration weighted trajectory as well as cluster analysis. Dust transport from the NWA region was found to make a substantial contribution to the supermicron mass fraction. The black carbon mass mixing ratios observed were the lowest compared to previous measurements over this region. Consequently, the atmospheric radiative forcing efficiency was low and was in the range 10-28 W m(-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II), extensive measurements of spectral aerosol optical depth, mass concentration, and mass size distribution of ambient aerosols as well as mass concentration of aerosol black carbon (BC) were made onboard a research vessel during the intermonsoon period (i.e., when the monsoon winds are in transition from northeasterlies to westerlies/ southwesterlies) over the Arabian Sea (AS) adjoining the Indian Peninsula. Simultaneous measurements of spectral aerosol optical depths (AODs) were made at different regions over the adjoining Indian landmass. Mean AODs (at 500-nm wavelength) over the ocean (similar to0.44) were comparable to those over the coastal land (similar to0.47), but were lower than the values observed over the plateau regions of central Indian Peninsula (similar to0.61). The aerosol properties were found to respond distinctly with respect to change in the trajectories, with higher optical depths and flatter AOD spectra associated with trajectories indicating advection from west Asia, and northwest and west-coastal India. On average, BC constituted only similar to2.2% to total aerosol mass compared to the climatological values of similar to6% over the coastal land during the same season. These data are used to characterize the physical properties of aerosols and to assess the resulting short-wave direct aerosol forcing. The mean values were similar to27 W m(-2) at the surface and -12 W m(-2) at the top of the atmosphere (TOA), resulting in a net atmospheric forcing of +15 W m(-2). The forcing also depended on the region from where the advection predominates. The surface and atmospheric forcing were in the range -40 to -57 W m(-2) and +27 to +39 W m(-2), respectively, corresponding to advection from the west Asian and western coastal India where they were as low as -19 and +10 W m(-2), respectively, when the advection was mainly from the Bay of Bengal and from central/peninsular India. In all these cases, the net atmospheric forcing (heating) efficiency was lower than the values reported for northern Indian Ocean during northern winter, which is attributed to the reduced BC mass fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making use of aerosol optical depths (AOD) derived from MODIS (onboard TERRA satellite) and winds from NCEP, and the fact that sea-salt optical depth over ocean is determined primarily by sea-surface wind speed, we examine the contribution of sea-salt to the composite aerosol optical depth ( AOD) over Arabian Sea ( AS), by developing empirical models for characterizing wind-speed dependence of sea-salt optical depth. We show that at high wind speeds, sea-salt contributes 81% to the coarse mode and 42% to the composite AOD in the southern AS. In contrast to this, over the northern AS, share of sea-salt to coarse mode and composite optical depth is only 35% and 16% respectively. Comparison of the sea-salt optical depth and coarse mode optical depth ( MODIS) showed excellent agreement. The sea-salt optical depth over AS at moderate to high wind speed is comparable to the anthropogenic AOD reported for this region during winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interannual variation of surface fields over the Arabian Sea and Bay of Bengal are studied using data between 1900 and 1979. It is emphasized that the monthly mean sea surface temperature (SST) over the north Indian Ocean and monsoon rainfall are significantly affected by synoptic systems and other intraseasonal variations. To highlight the interannual signals it is important to remove the large-amplitude high-frequency noise and very low frequency long-term trends, if any. By suitable spatial and temporal averaging of the SST and the rainfall data and by removing the long-term trend from the SST data, we have been able to show that there exists a homogeneous region in the southeastern Arabian Sea over which the March�April (MA) SST anomalies are significantly correlated with the seasonal (June�September) rainfall over India. A potential of this premonsoon signal for predicting the seasonal rainfall over India is indicated. It is shown that the correlation between the SST and the seasonal monsoon rainfall goes through a change of sign from significantly positive with premonsoon SST to very small values with SST during the monsoon season and to significantly negative with SST during the post-monsoon months. For the first time, we have demonstrated that heavy or deficient rainfall years are associated with large-scale coherent changes in the SST (although perhaps of small amplitude) over the north Indian 0cean. We also indicate possible reasons for the apparent lack of persistence of the premonsoon SST anomalies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Recent experiments conducted over the oceanic regions adjacent to the Indian sub continent have revealed the presence of anthropogenic aerosol haze during January to March. It has been suggested that the major source of this aerosol is South and Southeast Asia. Here we show from long term, multi-station and ship borne observations that aerosols transported from regions northwest of Indian subcontinent especially Arabian and Saharan regions (mostly natural dust) along with the locally produced sea-salt aerosols by sea-surface winds constitute a more significant source of aerosols during April-May period. The radiative forcing due to Arabian/Saharan aerosols (mostly natural) during April May period is comparable and often exceed (as much as 1.5 times) the forcing due to anthropogenic aerosols during January to March period. The presence of dust load over the Arabian Sea can influence the temperature profile and radiative balance in this region.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, an increase in the intensity of pre-monsoon tropical cyclones (TCs) is observed over the Arabian Sea. This study suggests that this increase is due to epochal variability in the intensity of TCs and is associated with epochal variability in the storm-ambient vertical wind shear and tropical cyclone heat potential (TCHP). There is a significant increase (0.53kJcm(-2)year(-1)) of TCHP during recent years. The warmer upper ocean helps TCs to sustain or increase their intensity by an uninterrupted supply of sensible and latent heat fluxes from the ocean surface to the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal marine environments are important links between the continents and the open ocean. The coast off Mangalore forms part of the upwelling zone along the southeastern Arabian Sea. The temperature, salinity, density, dissolved oxygen and stable oxygen isotope ratio (delta O-18) of surface waters as well as those of bottom waters off coastal Mangalore were studied every month from October 2010 to May 2011. The coastal waters were stratified in October and November due to precipitation and runoff. The region was characterised by upwelled bottom waters in October, whereas the region exhibited a temperature inversion in November. The surface and bottom waters presented almost uniform properties from December until April. The coastal waters were observed to be most dense in January and May. Comparatively cold and poorly oxygenated bottom waters during the May sampling indicated the onset of upwelling along the region. delta O-18 of the coastal waters successfully documented the observed variations in the hydrographical characteristics of the Mangalore coast during the monthly sampling period. We also noted that the monthly variability in the properties of the coastal waters of Mangalore was related to the hydrographical characteristics of the adjacent open ocean inferred from satellite-derived surface winds, sea surface height anomaly data and sea surface temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The species list is drawn from an analysis of catches taken by Sumalian and Russian trawlers in the Gulf of Aden and the Arabian Sea between 1985 and 1990. The southern coastline of the Republic of Yemen has been divided into 7 areas, including waters around Socotra Island. The average depth of each trawl was recorded in 50 m increments. Non-appearance of the species in the area does not mean that the species do not occur in that area or depth, merely that it was not recorded in any of the samples analyzed. Specimens that could not be identified to species level have been excluded. A total of 195 species from 75 families was recorded and is summarized. Most of the identification of species was from FAO species identification literature. Confirmation of some species and usage of common names is from ICLARM's FishBase and Al Sedfy, et al. (1982).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphometric studies were made on Lingula larvae collected from three different stations off Karwar and Coondapur. The data pertaining to length, breadth and the pairs of cirri were subjected to statistical analysis. The relationship between length and breadth shows allometric growth. The rate of increase in length in relation to breadth is not statistically significant up to the 10 P.C. stage. Increase in length is faster up to 12 P.C. stage.