908 resultados para Aquatic organisms
Resumo:
The present study assessed the uptake and toxicity of ZnO nanoparticles (NPs), ZnO bulk, and ZnCl2 salt in earthworms in spiked agricultural soils. In addition, the toxicity of aqueous extracts to Daphnia magna and Chlorella vulgaris was analyzed to determine the risk of these soils to the aquatic compartment. We then investigated the distribution of Zn in soil fractions to interpret the nature of toxicity. Neither mortality nor differences in earthworm body weight were observed compared with the control. The most sensitive end point was reproduction. ZnCl2 was notably toxic in eliminating the production of cocoons. The effects induced by ZnO-NPs and bulk ZnO on fecundity were similar and lower than those of the salt. In contrast to ZnO bulk, ZnO-NPs adversely affected fertility. The internal concentrations of Zn in earthworms in the NP group were greater than those in the salt and bulk groups, although bioconcentration factors were consistently <1. No relationship was found between toxicity and internal Zn amounts in earthworms. The results from the sequential extraction of soil showed that ZnCl2 displayed the highest availability compared with both ZnO. Zn distribution was consistent with the greatest toxicity showed by the salt but not with Zn body concentrations. The soil extracts from both ZnO-NPs and bulk ZnO did not show effects on aquatic organisms (Daphnia and algae) after short-term exposure. However, ZnCl2 extracts (total and 0.45-μm filtered) were toxic to Daphnia.
Resumo:
Mode of access: Internet.
Resumo:
Recently, microbial pest control agents (MPCAs) have been worldwide used to reduce chemical pesticide use and to diminish the high risk of those compounds in the environment. Among various MPCAs, the nuclear polyhedrosis virus Baculovirus anticarsia is widely used in Brazil in the biological control of the velvet bean caterpillar. Although literature data do not show adverse effects of baculoviruses to nontarget organisms, it is necessary to evaluate their toxicity or patogenicity in order to study th environmental risk of those products and to register the formulations in the Brazilian Environmental Regularory Agency - IBAMA. In the presente work, the influence of a Baculovirus anticarsia formulation was evaluted to measure the consequences in the growth rateof the green algae Selenastrum capricornutum, the duckweed Lemna valdiviana and the microcrustacean Daphnia similis. The survival of the fish Hyphessobrycon scholzei exposed during 28 days was also evaluated. No significative adverse effects (P > 0.05) were observed in the test organisms which were exposed to 1-1000 times the maximum calculated pesticide concentration following a direct application to 15 cm layer of water.
Resumo:
Resumo: Predição da concentração de baixo risco de diflubenzuron para organismos aquáticos e avaliação da argila e brita na redução da toxicidade. O diflubenzuron é um inseticida que além de ser usado agricultura, tem sido amplamente empregado na piscicultura, apesar do seu uso ser proibido nesta atividade. Este composto não consta na lista da legislação brasileira que estabelece limites máximos permissíveis em corpos de água para a proteção das comunidades aquáticas. No presente trabalho, a partir da toxicidade do diflubenzuron em organismos não-alvo, foi calculada a concentração de risco para somente 5% das espécies (HC5). O valor deste parâmetro foi estimado em aproximadamente 7 x 10-6 mg L-1 . Este baixo valor é devido à extremamente alta toxicidade do diflubenzuron para dafnídeos e à grande variação de sensibilidade entre as espécies testadas. Dois matérias de relativamente baixo custo se mostraram eficientes na remoção da toxicidade do diflubenzuron de soluções contendo este composto. Dentre esses materiais, a argila expandida promoveu a redução em aproximadamente 50% da toxicidade de uma solução contendo diflubenzuron. Os resultados podem contribuir para políticas públicas no Brasil relacionadas ao estabelecimento de limites máximos permissíveis de xenobióticos no compartimento aquático. Também, para a pesquisa de matérias inertes e de baixo custo com potencial de remoção de xenobióticos presentes em efluentes da aquicultura ou da agricultura. Abstract: Diflubenzuron is an insecticide that, besides being used in the agriculture, has been widely used in fish farming. However, its use is prohibited in this activity. Diflubenzuron is not in the list of Brazilian legislation establishing maximum permissible limits in water bodies for the protection of aquatic communities. In this paper, according toxicity data of diflubenzuron in non-target organisms, it was calculated an hazardous concentration for only 5% of the species (HC5) of the aquatic community. This parameter value was estimated to be about 7 x 10 -6 mg L -1 . The low value is due to the extreme high toxicity of diflubenzuron to daphnids and to the large variation in sensitivity among the species tested. Two relatively low cost and inert materials were efficient in removing the diflubenzuron from solutions containing this compound. Among these materials, expanded clay shown to promote reduction of approximately 50% of the toxicity of a solution containing diflubenzuron. The results may contribute to the establishment of public policies in Brazil associated to the definition of maximum permissible limits of xenobiotics in the aquatic compartment. This study is also relevant to the search of low cost and inert materials for xenobiotics removal from aquaculture or agricultural effluents.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The production and use of synthetic nanoparticles is growing rapidly, and therefore the presence of these materials in the environment seems inevitable. Titanium dioxide (TiO2) presents various possible uses in industry, cosmetics, and even in the treatment of contaminated environments. Studies about the potential ecotoxicological risks of TiO2 nanoparticles (nano-TiO2) have been published but their results are still inconclusive. It should be noted that the properties of the diverse nano-TiO2 must be considered in order to establish experimental models to study their toxicity to environmentally relevant species. Moreover, the lack of descriptions and characterization of nanoparticles, as well as differences in the experimental conditions employed, have been a compromising factor in the comparison of results obtained in various studies. Therefore, the purpose of this paper is to make a simple review of the principal properties of TiO2, especially in nanoparticulate form, which should be considered in aquatic toxicology studies, and a compilation of the works that have been published on the subject.
Resumo:
Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.
Resumo:
Aquatic Ecosystems perform numerous valuable environmental functions. They recycle nutrients, purify water, recharge ground water, augment and maintain stream flow, and provide habitat for a wide variety of flora and fauna and recreation for people. A rapid population increase accompanied by unplanned developmental works has led to the pollution of surface waters due to residential, agricultural, commercial and industrial wastes/effluents and decline in the number of water bodies. Increased demands for drainage of wetlands have been accommodated by channelisation, resulting in further loss of stream habitat, which has led to aquatic organisms becoming extinct or imperiled in increasing numbers and to the impairment of many beneficial uses of water, including drinking, swimming and fishing. Various anthropogenic activities have altered the physical, chemical and biological processes within aquatic ecosystems. An integrated and accelerated effort toward environmental restoration and preservation is needed to stop further degradation of these fragile ecosystems. Failure to restore these ecosystems will result in sharply increased environmental costs later, in the extinction of species or ecosystem types, and in permanent ecological damage.
Resumo:
Changes in sustainability of aquatic ecosystems are likely to be brought about by the global warming that has been widely predicted. In this article, the effects of water temperature on water-bodies (lakes, oceans and rivers) are reviewed followed by the effects of temperature on aquatic organisms. Almost all aquatic organisms require exogenous heat before they can metabolise efficiently. An organism that is adapted to warm temperatures will have a higher rate of metabolism of food organisms and this increases feeding rate. In addition, an increase in temperature raises the metabolism of food organisms, so food quality can be altered. Where populations have a different tolerance to temperature the result is habitat partitioning. One effect of prolonged high temperature is that it causes water to evaporate readily. In the marine littoral this is not an important problem as tides will replenish water in pools. Small rain pools are found in many tropical countries during the rainy season and these become incompletely dried at intervals. The biota of such pools must have resistant stages within the life cycle that enable them to cope with periods of drying. The most important potential effects of global warming include (i) the alteration of existing coastlines, (ii) the development of more deserts on some land masses, (iii) higher productivity producing higher crop production but a greater threat of algal blooms and (iv) the processing of organic matter at surface microlayers.
Resumo:
The overall goal of the joint research project is to relate the chemical reactions involved in the formation of organo-aluminium complexes under acid conditions to their toxic effects on the physiology of aquatic organisms. Finally, this research is intended to predict toxic effects arising from acidity and aluminium under varying environmental conditions. This interim report examines the chemical modelling of ion-binding by humic substances where a computer model has been developed and is being tested using field data, and conditions required for the precipitation of aluminium in surface waters.
Resumo:
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.
Resumo:
The toxic effects of sulphide are best understood in mammals and are generally similar in aquatic organisms. At the physiological level sulphide has 2 major effects on mammals: 1) local inflammation and irritation of moist membranes including the eye and respiratory tract; and, 2) cardiac arrest due to paralysis of the respiratory centres of the brain. The toxicity of sulphide to plants, macroinvertebrates, freshwater fish and marine fish is discussed in detail. It is concluded that the role of sulphide in mass kills of fish, shrimp and other animals in brackishwater earthen ponds, lakes and sea cages should be determined.
Resumo:
In a rapidly changing world it is essential that we should understand the factors controlling the sustainability of ecosystems. In aquatic ecosystems, both sensitivity and recoverability are influenced strongly by the life cycles of the organisms concerned. The response of individual species to change and their chances of survival in a variable environment can be affected dramatically by the timing and location of disturbances relative to their natural rhythms of fertilisation, dispersal and development. This book illustrates the wide range of issues that must be addressed to understand such relationships. Its purpose is to consider those aspects of life history that make aquatic organisms especially susceptible to (or adaptable to) changing environments -and hence to discuss links between impacts on individuals and the consequent effects on populations and communities.
Resumo:
Silver nanoparticles (AgNP) have been produced and applied in a variety of products ranging from personal care products to food package containers, clothing and medicine utilities. The antimicrobial function of AgNP makes it very useful to be applied for such purposes. Silver (Ag) is a non-essential metal for organisms, and it has been historically present in the environment at low concentrations. Those concentrations of silver increased in the last century due to the use of Ag in the photographic industry and lately are expected to increase due to the use of AgNPs in consumer products. The presence of AgNP in the aquatic environment may pose a risk for aquatic species, and the effects can vary from lethal to sublethal effects. Moreover, the contact of aquatic organisms with AgNP may not cause immediately the death of individuals but it can be accumulated inside the animals and consequently transferred within the food chain. Considering this, the objective of this work was to study the transfer of silver nanoparticles in comparison to silver ions, which was used as silver nitrate, within an aquatic food chain model. To achieve this goal, this study was divided into four steps: the toxicity assessment of AgNP and AgNO3 to aquatic test-species, the bioaccumulation assessment of AgNP and AgNO3 by Pseudokirchneriella subcapitata and Daphnia magna under different exposure scenarios, and finally the evaluation of the trophic transfer of Ag through an experimental design that included the goldfish Carassius auratus in a model trophic chain in which all the species were exposed to the worse-case scenario. We observed that the bioconcentration of Ag by P. subcapitata is mainly driven by ionic silver, and that algae cannot internalize these AgNPs, but it does internalizes dissolved Ag. Daphnia magna was exposed to AgNP and AgNO3 through different exposure routes: water, food and both water and food. The worse-case scenario for Daphnia Ag bioaccumulation was by the joint exposure of contaminated water and food, showing that Ag body burdens were higher for AgNPs than for AgNO3. Finally, by exposing C. auratus for 10 days through contaminated water and food (supplied as D. magna), with another 7 days of depuration phase, it was concluded that the 10 days of exposure were not enough for fish to reach a plateau on Ag internal concentration, and neither the 7 days of elimination were sufficient to cause total depuration of the accumulated Ag. Moreover, a higher concentration of Ag was found in the intestine of fish when compared with other organs, and the elimination rate constant of AgNP in the intestine was very low. Although a potential for trophic transfer of AgNP cannot be suggested based in the data acquired in this study, there is still a potential environmental risk for aquatic species.
Resumo:
Here we describe a novel, inexpensive and simple method for preserving RNA that reduces handling stress in aquatic invertebrates following ecotoxicogenomic experimentation. The application of the method is based on transcriptomic experiments conducted on Daphnia magna, but may easily be applied on a range of other aquatic organisms of a particular size with e.g. amphipod Gammarus pulex representing an upper size limit. We explain in detail how to apply this new method, named the "Cylindrical Sieve (CS) system", and highlight its advantages and disadvantages.