954 resultados para Applied identity-based encryption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. \emph{Forward Security (FS)}, introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.\smallskip In this paper we introduce FS to the powerful setting of \emph{Hierarchical Predicate Encryption (HPE)}, proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.\smallskip Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the ``cross-product" approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptosystems based on the hardness of lattice problems have recently acquired much importance due to their average-case to worst-case equivalence, their conjectured resistance to quantum cryptanalysis, their ease of implementation and increasing practicality, and, lately, their promising potential as a platform for constructing advanced functionalities. In this work, we construct “Fuzzy” Identity Based Encryption from the hardness of the Learning With Errors (LWE) problem. We note that for our parameters, the underlying lattice problems (such as gapSVP or SIVP) are assumed to be hard to approximate within supexponential factors for adversaries running in subexponential time. We give CPA and CCA secure variants of our construction, for small and large universes of attributes. All our constructions are secure against selective-identity attacks in the standard model. Our construction is made possible by observing certain special properties that secret sharing schemes need to satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles towards realizing lattice-based attribute-based encryption (ABE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of identity-based IB cryptography was proposed by Shamir [177] as a specialization of public key PK cryptography which dispensed with the need for cumbersome directories, certificates, and revocation lists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents ongoing work toward constructing efficient completely non-malleable public-key encryption scheme based on lattices in the standard (common reference string) model. An encryption scheme is completely non-malleable if it requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti proposed two inefficient constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Recently, two efficient public-key encryption schemes have been proposed, both of them are based on pairing identity-based encryption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to explore two of the mechanisms by which transformational leaders have a positive influence on followers. It examined the mediating role of follower’s leader and group identification on the associations among different transformational leader behaviours and follower job satisfaction and supervisor-rated job performance. One hundred and seventy-nine healthcare employees and 44 supervisors participated in the study. The results from multilevel structural equation modelling provided results that partially supported the predicted model. Identification with the leader significantly mediated the positive associations between supportive leadership, intellectual stimulation, personal recognition, in the prediction of job satisfaction and job performance. Leader identification also mediated the relationship between supportive leadership, intellectual stimulation, personal recognition, and group identification. However, group identification did not mediate the associations between vision leadership and inspirational communication, in the prediction of job satisfaction and job performance. The results highlight the role of individualized forms of leadership and leader identification in enhancing follower outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several papers have studied fault attacks on computing a pairing value e(P, Q), where P is a public point and Q is a secret point. In this paper, we observe that these attacks are in fact effective only on a small number of pairing-based protocols, and that too only when the protocols are implemented with specific symmetric pairings. We demonstrate the effectiveness of the fault attacks on a public-key encryption scheme, an identity-based encryption scheme, and an oblivious transfer protocol when implemented with a symmetric pairing derived from a supersingular elliptic curve with embedding degree 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE Computer Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lattice-based cryptography has gained credence recently as a replacement for current public-key cryptosystems, due to its quantum-resilience, versatility, and relatively low key sizes. To date, encryption based on the learning with errors (LWE) problem has only been investigated from an ideal lattice standpoint, due to its computation and size efficiencies. However, a thorough investigation of standard lattices in practice has yet to be considered. Standard lattices may be preferred to ideal lattices due to their stronger security assumptions and less restrictive parameter selection process. In this paper, an area-optimised hardware architecture of a standard lattice-based cryptographic scheme is proposed. The design is implemented on a FPGA and it is found that both encryption and decryption fit comfortably on a Spartan-6 FPGA. This is the first hardware architecture for standard lattice-based cryptography reported in the literature to date, and thus is a benchmark for future implementations.
Additionally, a revised discrete Gaussian sampler is proposed which is the fastest of its type to date, and also is the first to investigate the cost savings of implementing with lamda_2-bits of precision. Performance results are promising in comparison to the hardware designs of the equivalent ring-LWE scheme, which in addition to providing a stronger security proof; generate 1272 encryptions per second and 4395 decryptions per second.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the consistency of the recently proposed regularization of an identity based solution in open bosonic string field theory. We show that the equation of motion is satisfied when it is contracted with the regularized solution itself. Additionally, we propose a similar regularization of an identity based solution in the modified cubic superstring field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of identity-based signature scheme (IBS) has been proven useful in some scenarios where relying on the validity of the certificates is impractical. Nevertheless, one remaining inherent problem that hinders the adoption of this cryptographic primitive in practice is due to the key escrow problem, where the private key generator (PKG) can always impersonate the user in the system. In 2010, Yuen et al. proposed the notion of IBS that does not suffer from the key escrow problem. Nevertheless, their approach relies on the judge who will later blame the malicious PKG when such a dispute occurs, assuming that the PKG is willing to collaborate. Although the approach is attractive, but unfortunately it is impractical since the malicious PKG may just refuse to collaborate when such an incident happens. In this paper, we propose a new escrow-free IBS, which enjoys three main advantages, namely key escrow free, practical and very efficient. We present a generic intuition as well as an efficient instantiation. In our approach, there is no judge involvement required, as the public can determine the malicious behaviour of PKG when such an incident happens. Further, the signature size of our instantiation is only two group elements, which outperforms the existing constructions in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of strong designated verifier signature was put forth by Jakobsson, Sako and Impagliazzo in 1996, but the formal definition was defined recently by Saeednia, Kremer and Markowitch in 2003 and revisited by Laguil- laumie and Vergnaud in 2004. In this paper, we firstly propose the notion of short strong designated verifier sig- nature scheme, and extend it to the short identity-based strong designated verifier scheme. Then, we propose the first construction of short strong designated verifier sig- nature scheme. We also extend our scheme to construct a short identity-based strong designated verifier signature scheme. The size of the signature of our schemes is the shortest compared to any existing schemes reported in the literature. We provide formal security proofs for our schemes based on the random oracle model. Finally, we also discuss an extension of our scheme to construct a short strong designated verifier signature without random oracle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certificate-based encryption (CBE) and certificateless encryption (CLE) are proposed to lessen the certificate management problem in a traditional public-key encryption setting. Although they are two different notions, CBE and CLE are closely related and possess several common features. The encryption in CBE and CLE does not require authenticity verification of the recipient's public key. The decryption in both notions requires two secrets that are generated by the third party and the public key owner, respectively. Recently a generic conversion from CLE to CBE was given, but unfortunately its security proof is flawed. This paper provides an elaborate security model of CBE, based on which a provably secure generic construction of CBE from CLE is proposed. A concrete instantiation is also presented to demonstrate the application of our generic construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attribute-Based Encryption (ABE) is a promising cryptographic primitive which significantly enhances the versatility of access control mechanisms. Due to the high expressiveness of ABE policies, the computational complexities of ABE key-issuing and decryption are getting prohibitively high. Despite that the existing Outsourced ABE solutions are able to offload some intensive computing tasks to a third party, the verifiability of results returned from the third party has yet to be addressed. Aiming at tackling the challenge above, we propose a new Secure Outsourced ABE system, which supports both secure outsourced key-issuing and decryption. Our new method offloads all access policy and attribute related operations in the key-issuing process or decryption to a Key Generation Service Provider (KGSP) and a Decryption Service Provider (DSP), respectively, leaving only a constant number of simple operations for the attribute authority and eligible users to perform locally. In addition, for the first time, we propose an outsourced ABE construction which provides checkability of the outsourced computation results in an efficient way. Extensive security and performance analysis show that the proposed schemes are proven secure and practical. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart grid is a technological innovation that improves efficiency, reliability, economics, and sustainability of electricity services. It plays a crucial role in modern energy infrastructure. The main challenges of smart grids, however, are how to manage different types of front-end intelligent devices such as power assets and smart meters efficiently; and how to process a huge amount of data received from these devices. Cloud computing, a technology that provides computational resources on demands, is a good candidate to address these challenges since it has several good properties such as energy saving, cost saving, agility, scalability, and flexibility. In this paper, we propose a secure cloud computing based framework for big data information management in smart grids, which we call 'Smart-Frame.' The main idea of our framework is to build a hierarchical structure of cloud computing centers to provide different types of computing services for information management and big data analysis. In addition to this structural framework, we present a security solution based on identity-based encryption, signature and proxy re-encryption to address critical security issues of the proposed framework.