982 resultados para Appendicularia, fecal pellet carbon flux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind/m**2 and 7.4 mg C/m**2. However, maximum salp densities sampled with the Bongo net reached 56 ind/m**2 and 341 mg C/m**2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 µg (pig)/ind/day or from 0.25 to 2.38 mg C/ind/day in salps from 10 to 40 mm oral-atrial length, accounting for 25-75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet/ind/h with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 µg (pig)/day or from 164 to 239 µg C/day. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of fecal pellet flux show that a large percentage of pellets produced in the upper ocean is degraded within the surface waters. It is therefore important to investigate these degradation mechanisms to understand the role of fecal pellets in the oceanic carbon cycle. Degradation of pellets is mainly thought to be caused by coprophagy (ingestion of fecal pellets) by copepods, and especially by the ubiquitous copepods Oithona spp. We examined fecal pellet ingestion rate and feeding behavior of O. similis and 2 other dominant copepod species from the North Sea (Calanus helgolandicus and Pseudocalanus elongatus). All investigations were done with fecal pellets as the sole food source and with fecal pellets offered together with an alternative suitable food source. The ingestion of fecal pellets by all 3 copepod species was highest when offered together with an alternative food source. No feeding behavior was determined for O. similis due to the lack of pellet capture in those experiments. Fecal pellets offered together with an alternative food source increased the filtration activity by C. helgolandicus and P. elongatus and thereby the number of pellets caught in their feeding current. However, most pellets were rejected immediately after capture and were often fragmented during rejection. Actual ingestion of captured pellets was rare (<37% for C. helgolandicus and <24% for P. elongatus), and only small pellet fragments were ingested unintentionally along with alternative food. We therefore suggest coprorhexy (fragmentation of pellets) to be the main effect of copepods on the vertical flux of fecal pellets. Coprorhexy turns the pellets into smaller, slower-sinking particles that can then be degraded by other organisms such as bacteria and protozooplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined with deficient or excess food. Fecal pellet and egg production were measured as indices for grazing and secondary production, respectively. Furthermore, changes in body carbon, nitrogen, and lipid content were measured. C. glacialis sampled before the bloom and incubated with excess food exhibited high specific egg production at temperatures between 0 and 2.5°C. Higher temperatures did not increase egg production considerably, whereas egg production for C. finmarchicus more than tripled between 2.5 and 5°C. Starved C. glacialis produced eggs at all temperatures stimulated by increasing temperatures, whereas starved C. finmarchicus needed temperatures above 5°C to produce eggs fueled by their lipid stores. Few C. finmarchicus had mature gonads at the initiation of the pre-bloom and bloom experiment, and egg production of C. finmarchicus therefore only increased as the ratio of individuals with mature gonads increased. During the bloom, both C. glacialis and C. finmarchicus used the high food availability for egg production, while refueling or exhausting their lipid stores, respectively. Finally, during the post-bloom experiment, production was low by C. finmarchicus, whereas C. glacialis had terminated production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copepod fecal pellets are often degraded at high rates within the upper part of the water column. However, the identity of the degraders and the processes governing the degradation remain unresolved. To identify the pellet degraders we collected water from Øresund (Denmark) approximately every second month from July 2004 to July 2005. These water samples were divided into 5 fractions (<0.2, <2, <20, <100, <200 µm) and total (unfractionated). We determined fecal pellet degradation rate and species composition of the plankton from triplicate incubations of each fraction and a known, added amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Øresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 ± 0.49 d**-1) and minimum (0.52 ± 0.14 d**-1) during late winter. Total pellet removal rate ranged from 22% d**-1 (July 2005) to 87% d**-1 (May). Protozooplankton (dinoflagellates and ciliates) in the size range of 20 to 100 µm were the key degraders of the fecal pellets, contributing from 15 to 53% of the total degradation rate. Free-living in situ bacteria did not affect pellet degradation rate significantly; however, culture-originating bacteria introduced in association with the pellets contributed up to 59% of the total degradation rate. An effect of late-stage copepod nauplii (>200 µm) was indicated, but this was not a dominating degradation process. Mesozooplankton did not contribute significantly to the degradation. However, grazing of mesozooplankton on the pellet degraders impacts pellet degradation rate indirectly. In conclusion, protozooplankton seems to include the key organisms for the recycling of copepod fecal pellets in the water column, both through the microbial loop and, especially, by functioning as an effective 'protozoan filter' for fecal pellets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of suspended sediments on the vital rates of the copepods Calanus finmarchicus, Pseudocalanus sp. and Metridia longa in a Greenland sub-Arctic fjord. The fjord had a gradient of suspended particulate matter (SPM) with high concentrations (>50 mg/L) in the inner fjord due to glacial melt water runoff. Laboratory experiments showed that when feeding on the diatom Thalassiosira weissflogii specific ingestion rates were low at high concentrations of suspended sediment for C. finmarchicus (>20 mg/L) and Pseudocalanus sp. (>50 mg/L), while no effect was found for M. longa. For C. finmarchicus, a relatively constant fecal pellet production (FPP) and fecal pellet volume suggested ingestion of sediment, which probably led to reduction in egg production rates (EPRs) at high sediment concentrations. For Pseudocalanus sp., FPP decreased with increasing sediment concentrations, while no effect was observed on EPR. No significant difference was observed in FPP for M. longa feeding on the diatom T. weissflogii compared to the ciliate Strombidium sulcatum. The study shows that high sediment concentrations influence the capability of carbon turnover in C. finmarchicus and Pseudocalanus sp., while M. longa appears to be more tolerant to high sediment loads. Therefore, high concentrations of SPM could potentially influence the species composition of glacially influenced fjords.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pre-bloom grazing and egg production rates of Calanus finmarchicus were studied at in situ temperature and chlorophyll concentration during spring on North Atlantic cruise. The sampled transects covered the Iceland, Irminger and Labrador basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.