193 resultados para Aphids
Resumo:
Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.
Resumo:
Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. © 2016 Macmillan Publishers Limited.
Resumo:
Corn, Zea mays L., is the most abundant field crop in Iowa, and there are many insect pests associated with this field crop. Although aphids are not typically economically important in corn, recent observations have indicated several aphid species developing heavy populations in northwest Iowa and southwest Minnesota. Historically, the corn leaf aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), has been the most abundant aphid species in corn; however, the bird cherry oat aphid, R. padi (Hemiptera: Aphididae), and several other species have also been detected. Recent observations show a shift to populations peaking later in the summer. Damage potential and management guidelines for aphids in corn are not well defined and this research is aimed at developing economic threshold and sampling protocols.
Resumo:
Integrated Pest Management of insects includes several control tactics, such as the use of photoselective nets, which may reduce the flight activity of insects. Limiting the dispersal of pests such as aphids and whiteflies is important because of their major role as vectors of plant viruses, while a minor impact on natural enemies is desired. In this study, we examined for the first time the dispersal ability of three vector species, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and Myzus persicae (Sulzer) (Hemiptera: Aphididae), in cages covered with photoselective nets. Contrary to the results obtained with aphids, the ability of the whitefly B. tabaci, to reach the target plant was reduced by photoselective nets. In a second set of experiments, the impact of UV-absorbing nets on the visual cues of two important predator species, Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae), was evaluated. The anthocorid was caught in higher numbers in traps placed under regular nets, whereas the mites preferably chose environments in which the UV radiation was attenuated. We have observed a wide range of effects that impedes generalization, although photoselective nets have a positive effect on pest management of whiteflies and aphids under protected environments.
Resumo:
"Serial no. 84-XX."
Resumo:
Includes index.
Resumo:
Bibliography: p. 21.
Resumo:
Copy 2: Amer. Ent. Soc. QL523.A6M3.
Resumo:
Issued May 1978.
Resumo:
Aphids cause significant losses in many agricultural crops and in many cases cause repeated insecticide sprays, which increase the risk of resistance. Therefore, other alternatives are needed to control them. The toxic, antireproductive, and feeding deterrent effects of a mannosebinding lectin isolated from bulbs of Phycella australis Ravenna (Amaryllidaceae), named Phycella australis agglutinin (PAA) was assayed on nymphs of the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer fed with an artificial diet. After 72 h of PAA exposure, lethal concentration (LC50) values were 109 and 313 μg mL-1 for A. pisum and M. persicae, respectively, while LC90 values were 248 and 634 μg mL-1. Sub-lethal concentrations of PAA significantly reduced the aphid fecundity at a concentration of 80 μg mL-1. Only a total of 5.7 descendants per female were recorded for A. pisum (32% control progeny) and 12.4 for M. persicae (39% control progeny). Acyrthosiphon pisum was strongly deterred by PAA under choice conditions, as after 72 h exposed to 80 μg PAA mL-1 of diet, the feeding deterrent index was 0.91 for A. pisum and only 0.38 for M. persicae. In conclusion, the mannosebinding lectin isolated from bulbs of P. australis showed acute and chronical insecticidal activity against the pea and green peach aphids.
Resumo:
Banana bunchy top is regarded as the most important viral disease of banana, causing significant yield losses worldwide. The disease is caused by Banana bunchy top virus (BBTV), which is a circular ssDNA virus belonging to the genus Babuvirus in the family Nanoviridae. There are currently few effective control strategies for this and other ssDNA viruses. “In Plant Activation” (InPAct) is a novel technology being developed at QUT for ssDNA virus-activated suicide gene expression. The technology exploits the rolling circle replication mechanism of ssDNA viruses and is based on a unique “split” gene design such that suicide gene expression is only activated in the presence of the viral Rep. This PhD project aimed to develop a BBTV-based InPAct system as a suicide gene strategy to control BBTV. The BBTV-based InPAct vector design requires a BBTV intergenic region (IR) to be embedded within an intron in the gene expression cassette. To ensure that the BBTV IR would not interfere with intron splicing, a TEST vector was initially generated that contained the entire BBTV IR embedded within an intron in a β-glucuronidase (GUS) expression vector. Transient GUS assays in banana embryogenic cell suspensions indicated that cryptic intron splice sites were present within the IR. Transcript analysis revealed two cryptic intron splice sites in the Domain III sequence of the CR-M within the IR. Removal of the CR-M from the TEST vector resulted in an enhancement of GUS expression suggesting that the cryptic intron splice sites had been removed. An InPAct GUS vector was subsequently generated that contained the modified BBTV IR, with the CR-M (minus Domain III) repositioned within the InPAct cassette. Using transient histochemical and fluorometric GUS assays in banana embryogenic cells, the InPAct GUS vector was shown to be activated in the presence of the BBTV Rep. However, the presence of both BBTV Rep and Clink was shown to have a deleterious effect on GUS expression suggesting that these proteins were cytotoxic at the levels expressed. Analysis of replication of the InPAct vectors by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector through the nicking/ligation activity of BBTV Rep. However, Rep-mediated episomal replicons, indicative of rolling circle replication of the released circularised cassettes, were not observed. The inability of the InPAct cassette to be replicated was further investigated. To examine whether the absence of Domain III of the CR-M was responsible, a suite of modified BBTV-based InPAct GUS vectors was constructed that contained the CR-M with the inclusion of Domain III, the CR-M with the inclusion of Domain III and additional upstream IR sequence, or no CR-M. Analysis of replication by Southern hybridisation revealed that neither the presence of Domain III, nor the entire CR-M, had an effect on replication levels. Since the InPAct cassette was significantly larger than the native BBTV genomic components (approximately 1 kb), the effect of InPAct cassette size on replication was also investigated. A suite of size variant BBTV-based vectors was constructed that increased the size of a replication competent cassette to 1.1 kbp through to 2.1 kbp.. Analysis of replication by Southern hybridisation revealed that an increase in vector size above approximately 1.5 - 1.7 kbp resulted in a decrease in replication. Following the demonstration of Rep-mediated release, circularisation and expression from the InPAct GUS vector, an InPAct vector was generated in which the uidA reporter gene was replaced with the ribonuclease-encoding suicide gene, barnase. Initially, a TEST vector was generated to assess the cytotoxicity of Barnase on banana cells. Although transient assays revealed a Barnase-induced cytotoxic effect in banana cells, the expression levels were sub-optimal. An InPAct BARNASE vector was generated and tested for BBTV Rep-activated Barnase expression using transient assays in banana embryogenic cells. High levels of background expression from the InPAct BARNASE vector made it difficult to accurately assess Rep-activated Barnase expression. Analysis of replication by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector but no Rep-mediated episomal replicons indicative of rolling circle replication of the released circularised cassettes were again observed. Despite the inability of the InPAct vectors to replicate to enable high level gene expression, the InPAct BARNASE vector was assessed in planta for BBTV Rep-mediated activation of Barnase expression. Eleven lines of transgenic InPAct BARNASE banana plants were generated by Agrobacterium-mediated transformation and were challenged with viruliferous Pentalonia nigronervosa. At least one clonal plant in each line developed bunchy top symptoms and infection was confirmed by PCR. No localised lesions were observed on any plants, nor was there any localised GUS expression in the one InPAct GUS line challenged with viruliferous aphids. The results presented in this thesis are the first study towards the development of a BBTV-based InPAct system as a Rep-activatable suicide gene expression system to control BBTV. Although further optimisation of the vectors is necessary, the preliminary results suggest that this approach has the potential to be an effective control strategy for BBTV. The use of iterons within the InPAct vectors that are recognised by Reps from different ssDNA plant viruses may provide a broad-spectrum resistance strategy against multiple ssDNA plant viruses. Further, this technology holds great promise as a platform technology for the molecular farming of high-value proteins in vitro or in vivo through expression of the ssDNA virus Rep protein.
Resumo:
Background: Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. Methods and Findings: We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. Conclusions/Significance: Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.1561024 nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation.