980 resultados para Apatite fission track analysis
Resumo:
The area between São Paulo and Porto Alegre in southeastern Brazil plays a key area to understand and quantify the evolution of the South Atlantic passive continental margin (SAPCM) in Brazil. In this contribution, we present new thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons from metamorphic, sedimentary and intrusive rocks. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4). Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 525.1(2.4). Ma, whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0). Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.5) and 93.0 (2.5). Ma. The spatial distribution of these ages shows three distinct blocks with a different evolution cut by old fracture zones. While the central block exhibits an old stable block, the Northern and especially the Southern block underwent complex post-rift exhumation. The sample of the Northern block shows two distinct cooling phases in the Upper Cretaceous and the Paleogene to Neogene. After sedimentation of the Permian sandstones the samples of the Central block were never heated up over 100. °C with a following moderate to fast cooling phase in Cretaceous to Eocene time and a fast cooling between Oligocene to Miocene. The five thermal models obtained in the Southern block indicate a complex evolution with three cooling phases. The exhumation events of the three blocks correspond with the Paraná-Etendekka event, the alkaline intrusions due to the Trinidad hotspot, and the evolution of the continental rift basins in SE Brazil and are, therefore, most likely to be the major force for the post-rift evolution of the passive continental margin in SE Brazil, which therefore corresponds to the three main phases of the Andean orogeny. © 2013 Elsevier B.V.
Resumo:
The fission-track method (FTM) in apatite was applied to 45 samples collected in the Serra da Mantiqueira (Mantiqueira mountain range), the Serra do Mar (Mar mountain range), regions next to these mountain ranges and the coastal region between Ubatuba and Santos in the State of São Paulo, Brazil, to study the thermochronology of the South American Platform in southeast Brazil and its influence on Santos and Campos basins. The data presented in this work complement the previously presented data on the same region (Tello Saenz et al., 2003. J. S. Am. Earth Sci. 15, 765-774) with 31 new samples analyzed. The weighted mean of the corrected ages from high Mantiqueira (around 1000 m), (121 +/- 6) Ma, coincides with the South Atlantic opening. The fact that its thermal history starts at a relatively low temperature (similar to 80 degrees C) suggests that the age of similar to 120 Ma would be the formation age of Serra da Mantiqueira due to a rapid pulse, in which tracks had no time to be retained at the closure temperature, that is similar to 120 degrees C. The Serra do Mar presents a more complicated thermal history, with several reactivations indicated by the changes in the slope of its cooling curve. The thermal histories obtained in the regions next to these mountain ranges are compatible with the results mentioned above. The Santos Basin has unconformities that agree with changes in the slope thermal histories of the studied region. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The use of epidote in fission track dating was abandoned since the beginning of the 1980s due to difficulties like absence of a standard etching procedure, obtainment of different closure temperatures and the percentage of the datable samples. The results become much more reproducible when restricting fission track analysis to a peculiar kind of track. We are also studying confined track length, what makes possible to obtain information about fossil track annealing. Fission tracks in epidote were successfully etched with 48% HF at 35 degrees C for 12.5 min. Dating samples by the external detector method was not possible due to problems in measuring the efficiency factor held between the number of fossil fission tracks and tracks induced in mica. Dating a sample from Brejui, RN, Brazil with the population method gave a corrected age of 510 +/- 69Ma, in agreement with published U/Th-Pb ages. From the fact that the fossil track length histogram was bimodal, we were able to infer that this sample registered a thermal episode during its history.These preliminary results indicate that epidote deserves further studies to establish whether it can be employed as a thermochronological tool. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To carry out the dating by the Fission Track Method (FTM) the international community that works with this method employs methodologies in which the mineral to be dated must be irradiated with neutrons. Such irradiation, performed in a nuclear reactor, demand a relatively long waiting time so that the activity of the sample attain a proper level for handling. The present work aims to establish a methodology that makes possible the dating by FTM using a mass spectrometer instead of a nuclear reactor. This methodology was applied to apatite samples from Durango, Mexico. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Apatite fission track (FT) ages and length characteristics of samples obtained from Cambrian to Paleocene-aged sandstones collected along the margin of Nares Strait in Ellesmere Island in the Canadian Arctic Archipelago are dominated by a thermal history related to Paleogene relative plate movements between Greenland and Ellesmere Island. A preliminary inverse FT thermal model for a Cambrian (Archer Fiord Formation) sandstone in the hanging wall of the Rawlings Bay thrust at Cape Lawrence is consistent with Paleocene exhumational cooling, likely as a result of erosion of the thrust. This suggests that thrusting at Cape Lawrence occurred prior to the onset of Eocene compression, likely due to transpression during earlier strikeslip along the strait. Models for samples from volcaniclastic sandstones of the Late Paleocene Pavy Formation (from Cape Back and near Pavy River), and a sandstone from the Late Paleocene Mount Lawson Formation (at Split Lake, near Makinson Inlet) are also consistent with minor burial heating following known periods of basaltic volcanism in Baffin Bay and Davis Strait (c. 61-59 Ma), or related tholeiitic volcanism and intrusive activity (c. 55-54 Ma). Thermal models for samples from sea level dykes from around Smith Sound suggest a period of Late Cretaceous - Paleocene heating prior to final cooling during Paleocene time. These model results imply that Paleocene tectonic movements along Nares Strait were significant, and provide limited support for the former existence of the Wegener Fault. Apatite FT data from central Ellesmere Island suggest however, that cooling there occurred during Early Eocene time (c. 50 Ma), which was likely a result of erosion of thrusts during Eurekan compression. This diachronous cooling suggests that Eurekan deformation was partitioned at discrete intervals across Ellesmere Island, and thus it is likely that displacements along the strait were much less than the 150 km that has been previously suggested for the Wegener Fault.
Resumo:
The Bocaina Plateau, which is situated on the eastern flank of the continental rift of southeastern Brazil, is the highest part of the Serra do Mar. Topographic relief in this area is suggested to be closely related to its complex tectono-magmatic evolution since the breakup of Western Gondwana and opening of the South Atlantic Ocean. Apatite fission track ages and track length distributions from 27 basement outcrops were determined to assess these hypotheses and reconstruct the denudation history of the Bocaina Plateau. The ages range between 303 +/- 32 and 46 +/- 5 Ma, and are significantly younger than the stratigraphic ages. Mean track lengths vary from 13.44 +/- 1.51 to 11.1 +/- 1.48 mu m, with standard deviations between 1.16 and 1.83 mu m. Contrasting ages within a single plateau and similar ages at different altitudes indicate a complex regional tectonothermal evolution. The thermal histories inferred from these data imply three periods of accelerated cooling related to the Early Cretaceous continental breakup, Early Cretaceous alkaline magmatism, and the Paleogene evolution of the continental rift of southeastern Brazil. The oldest fission track ages (>200 Ma) were obtained in the Serra do Mar region, suggesting that these areas were a long-lived source of sediments for the Parana, Bauru, and Santos basins. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The different tectonic stages that occurred at the end of the Proterozoic and during the Phanerozoic have an important bearing on the tectonothermal history of the South American Platform and its consolidation. Geochronological data (U/Pb monazite, Ar-40/Ar-39 whole rock) and apatite fission-track analysis, from Precambrian rocks of the southeastern Brazilian coastline, permit the modeling of a long-term thermal history of the crust and constrain variable denudation rates.Using these data, a temperature-time diagram reflects a period of accelerated exhumation during the end of the Brasiliano Orogeny, followed by long stability and reactivation of the platform during the Rifting Phase of the South Atlantic Ocean.U/Pb zircon and monazite (blocking temperature of ca. 650degreesC) data from a series of igneous bodies suggest that a tangential and transpressional tectonic regime occurred between 625 and 610 Ma. During the following escape tectonics, between 610 and 590 Ma the exhumation process indicates cooling rates of ca. 12degreesC/Ma. Ar-40/Ar-39 biotite ages between 540 and 510 Ma (ca. 300degreesC) and a corrected fission-track age on apatites (100degreesC) of 480 Ma indicate an exhumation event related to block tectonics with huge vertical displacement along shear zones.A long stabilization phase, with low exhumation, and cooling rate around 0.25degreesC/Ma was recorded from the Cambro/Ordovician to the Mesozoic. At 65 Ma an acceleration of the exhumation through denudation and reworking of the South American surface with cooling rate of 1.5degreesC/Ma is observed.The uplift of the Mantiqueira and Serra do Mar mountain ranges along the southeast Brazilian coastline works as a climatic barrier provoking lateral erosional processes causing long-term scarp retreat, combined with intense, but progressive denudation towards the continent. A denudation of 2.5 to 4 km was calculated for such processes. This lateral retreat of escarpments and flexural response can provide important insights regarding marginal isostatic uplift and the evolution of offshore sedimentary basins of southeast Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The possible development of thermal events in the central portion of São Paulo state was described based on apatite fission track analysis. Using apatites of sedimentary rocks of the Paraná Basin, modeling the thermal history was made possible due to the homogeneity of the data. Every thermal history begins with a total annealing of fission tracks, related to the Serra Geral magmatism, evolving into a cooling period. In addition to cooling after the magmatism (Early Cretaceous) two other periods of cooling were also detected, registered in the Late Cretaceous/ Paleocene and Eocene, driven as much by uplift with tectonic denudation as by faulting. The nearest portion of the edge of the basin (external to the Dome of Pitanga), registered a period of warming over the Paleocene that can be attributed to the increase in the geothermal gradient. The periods of cooling have a regional and temporal relationship with the tectonic events that occurred in the southeastern Brazil and were described in the crystalline basement. The period of warming, registered in the Late Cretaceous/ Paleocene, has local occurrence and can be found only in the southern portion of the studied area.
Resumo:
An integrated array of analytical methods -including clay mineralogy, vitrinite reflectance, Raman spectroscopy on carbonaceous material, and apatite fission-track analysis- was employed to constrain the thermal and thermochronological evolution of selected portions of the Pontides of northern Turkey. (1) A multimethod investigation was applied for the first time to characterise the thermal history of the Karakaya Complex, a Permo-Triassic subduction-accretion complex cropping out throughout the Sakarya Zone. The results indicate two different thermal regimes: the Lower Karakaya Complex (Nilüfer Unit) -mostly made of metabasite and marble- suffered peak temperatures of 300-500°C (greenschist facies); the Upper Karakaya Complex (Hodul and the Orhanlar Units) –mostly made of greywacke and arkose- yielded heterogeneous peak temperatures (125-376°C), possibly the result of different degree of involvement of the units in the complex dynamic processes of the accretionary wedge. Contrary to common belief, the results of this study indicate that the entire Karakaya Complex suffered metamorphic conditions. Moreover, a good degree of correlation among the results of these methods demonstrate that Raman spectroscopy on carbonaceous material can be applied successfully to temperature ranges of 200-330°C, thus extending the application of this method from higher grade metamorphic contexts to lower grade metamorphic conditions. (2) Apatite fission-track analysis was applied to the Sakarya and the İstanbul Zones in order to constrain the exhumation history and timing of amalgamation of these two exotic terranes. AFT ages from the İstanbul and Sakarya terranes recorded three distinct episodes of exhumation related to the complex tectonic evolution of the Pontides. (i) Paleocene - early Eocene ages (62.3-50.3 Ma) reflect the closure of the İzmir-Ankara ocean and the ensuing collision between the Sakarya terrane and the Anatolide-Tauride Block. (ii) Late Eocene - earliest Oligocene (43.5-32.3 Ma) ages reflect renewed tectonic activity along the İzmir-Ankara. (iii) Late Oligocene- Early Miocene ages reflect the onset and development of the northern Aegean extension. The consistency of AFT ages, both north and south of the tectonic contact between the İstanbul and Sakarya terranes, suggest that such terranes were amalgamated in pre-Cenozoic times. (3) Fission-track analysis was also applied to rock samples from the Marmara region, in an attempt to constrain the inception and development of the North Anatolian Fault system in the region. The results agree with those from the central Pontides. The youngest AFT ages (Late Oligocene - early Miocene) were recorded in the western portion of the Marmara Sea region and reflect the onset and development of northern Aegean extension. Fission-track data from the eastern Marmara Sea region indicate rapid Early Eocene exhumation induced by the development of the İzmir-Ankara orogenic wedge. Thermochronological data along the trace of the Ganos Fault –a segment of the North Anatolian Fault system- indicate the presence of a tectonic discontinuity active by Late Oligocene time, i.e. well before the arrival of the North Anatolian Fault system in the area. The integration of thermochronologic data with preexisting structural data point to the existence of a system of major E-W-trending structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, inception of the present-day North Anatolian Fault system in the Marmara region occurred by reactivation of these older tectonic structures.
Resumo:
During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
Resumo:
A methodology to obtain ages and thermal histories of sets of apatite samples from localities with geologically compatible characteristics is described. A methodology exploring the fact that samples with similar geological characteristics should present the same thermal history is proposed. This approach can contribute for the obtainment of more conclusive results by analysing fewer samples than it is necessary when the samples are individually analysed. In order to determine the ages, we use the absolute neutron dosimetry through thin films of natural uranium along with lambda(f) = 8.46 x 10(-17) a(-1). As an example of application of the proposed methodology, we analyse samples collected in a Brazilian region, Sao Francisco Craton, which experienced low tectonic activity. (C) 2008 Elsevier Ltd. All rights reserved.