973 resultados para Antiperiodic Boundary Conditions
Resumo:
Near linear evolution in Korteweg de Vries (KdV) equation with periodic boundary conditions is established under the assumption of high frequency initial data. This result is obtained by the method of normal form reduction.
Resumo:
In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
Resumo:
The focus of this dissertation is the motivational influences on transfer in higher education and professional training contexts. To estimate these motivational influences, the dissertation includes seven individual studies that are structured in two parts. Part I, Dimensions, aims at identifying the dimensionality of motivation to transfer and its structural relations with training-related antecedents and outcomes. Part II, Boundary Conditions, aims at testing the predictive validity of motivation theories used in contemporary training research under different study conditions. Data in this dissertation was gathered from multi-item questionnaires, which were analyzed differently in Part I and Part II. Studies in Part I employed exploratory and confirmatory factor analysis, structural equation modeling, partial least squares (PLS) path modeling, and mediation analysis. Studies in Part II used artifact distribution meta-analysis, (nested) subgroup analysis, and weighted least squares (WLS) multiple regression. Results demonstrate that motivation to transfer can be conceptualized as a three-dimensional construct, including autonomous motivation to transfer, controlled motivation to transfer, and intention to transfer, given a theoretical framework informed by expectancy theory, self-determination theory, and the theory of planned behavior. Results also demonstrate that a range of boundary conditions moderates motivational influences on transfer. To test the predictive validity of expectancy theory, social cognitive theory, and the theory of goal orientations under different study settings, a total of 17 boundary conditions were meta-analyzed, including age; assessment criterion; assessment source; attendance policy; collaboration among trainees; computer support; instruction; instrument used to measure motivation; level of education; publication type; social training context; SS/SMC bias; study setting; survey modality; type of knowledge being trained; use of a control group; and work context. Together, the findings cumulated in this thesis support the basic premise that motivation is centrally important for transfer, but that motivational influences need to be understood from a more differentiated perspective than commonly found in the literature, in order to account for several dimensions and boundary conditions. The results of this dissertation across the seven individual studies are reflected in terms of their implications for theory development and their significance for training evaluation and the design of training environments. Limitations and directions to take in future research are discussed.
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.
Resumo:
We consider the imposition of Dirichlet boundary conditions in the finite element modelling of moving boundary problems in one and two dimensions for which the total mass is prescribed. A modification of the standard linear finite element test space allows the boundary conditions to be imposed strongly whilst simultaneously conserving a discrete mass. The validity of the technique is assessed for a specific moving mesh finite element method, although the approach is more general. Numerical comparisons are carried out for mass-conserving solutions of the porous medium equation with Dirichlet boundary conditions and for a moving boundary problem with a source term and time-varying mass.
Resumo:
The P-1-P-1 finite element pair is known to allow the existence of spurious pressure (surface elevation) modes for the shallow water equations and to be unstable for mixed formulations. We show that this behavior is strongly influenced by the strong or the weak enforcement of the impermeability boundary conditions. A numerical analysis of the Stommel model is performed for both P-1-P-1 and P-1(NC)-P-1 mixed formulations. Steady and transient test cases are considered. We observe that the P-1-P-1 element exhibits stable discrete solutions with weak boundary conditions or with fully unstructured meshes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.