995 resultados para Antineoplastic agents Testing
Resumo:
PURPOSE: In the setting of a prospective clinical trial, we determined the predictive value of the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter for outcome in glioblastoma patients treated with the alkylating agent temozolomide. Expression of this excision repair enzyme has been associated with resistance to alkylating chemotherapy. EXPERIMENTAL DESIGN: The methylation status of MGMT in the tumor biopsies was evaluated in 38 patients undergoing resection for newly diagnosed glioblastoma and enrolled in a Phase II trial testing concomitant and adjuvant temozolomide and radiation. The epigenetic silencing of the MGMT gene was determined using methylation-specific PCR. RESULTS: Inactivation of the MGMT gene by promoter methylation was associated with longer survival (P = 0.0051; Log-rank test). At 18 months, survival was 62% (16 of 26) for patients testing positive for a methylated MGMT promoter but reached only 8% (1 of 12) in absence of methylation (P = 0.002; Fisher's exact test). In the presence of other clinically relevant factors, methylation of the MGMT promoter remains the only significant predictor (P = 0.017; Cox regression). CONCLUSIONS: This prospective clinical trial identifies MGMT-methylation status as an independent predictor for glioblastoma patients treated with a methylating agent. The association of the epigenetic inactivation of the DNA repair gene MGMT with better outcome in this homogenous cohort may have important implications for the design of future trials and supports efforts to deplete MGMT by O-6-benzylguanine, a noncytotoxic substrate of this enzyme.
Resumo:
An increased frequency of nontyphoidal salmonellosis is well established in cancer patients, but it is unclear whether this represents increased susceptibility to exogenous infection or opportunistic, endogenous reactivation of asymptomatic carriage. In a retrospective study, a simple case definition was used to identify the probable presence of reactivation salmonellosis in five cancer patients between 1996 and 2002. Reactivation salmonellosis was defined as the development of nosocomial diarrhea >72 h after admission and following the administration of antineoplastic chemotherapy in an HIV-seronegative cancer patient who was asymptomatic on admission, in the absence of epidemiological evidence of a nosocomial outbreak. Primary salmonellosis associated with unrecognized nosocomial transmission or community acquisition and an unusually prolonged incubation period could not entirely be ruled out. During the same time period, another opportunistic infection, Pneumocystis pneumonia, was diagnosed in six cancer patients. Presumably, asymptomatic intestinal Salmonella colonization was converted to invasive infection by chemotherapy-associated intestinal mucosal damage and altered innate immune mechanisms. According to published guidelines, stool specimens from patients hospitalized for longer than 72 h should be rejected unless the patient is neutropenic or >or=65 years old with significant comorbidity. However, in this study neutropenia was present in only one patient, and four patients were <65 years old. Guidelines should thus be revised in order not to reject stool culture specimens from such patients. In cancer patients, nosocomial salmonellosis can occur as a chemotherapy-triggered opportunistic reactivation infection that may be similar in frequency to Pneumocystis pneumonia.
Resumo:
PURPOSE: We conducted a comprehensive review of the design, implementation, and outcome of first-in-human (FIH) trials of monoclonal antibodies (mAbs) to clearly determine early clinical development strategies for this class of compounds. METHODS: We performed a PubMed search using appropriate terms to identify reports of FIH trials of mAbs published in peer-reviewed journals between January 2000 and April 2013. RESULTS: A total of 82 publications describing FIH trials were selected for analysis. Only 27 articles (33%) reported the criteria used for selecting the starting dose (SD). Dose escalation was performed using rule-based methods in 66 trials (80%). The median number of planned dose levels was five (range, two to 13). The median of the ratio between the highest planned dose and the SD was 27 (range, two to 3,333). Although in 56 studies (68%) at least one grade 3 or 4 toxicity event was reported, no dose-limiting toxicity was observed in 47 trials (57%). The highest planned dose was reached in all trials, but the maximum-tolerated dose (MTD) was defined in only 13 studies (16%). The median of the ratio between MTD and SD was eight (range, four to 1,000). The recommended phase II dose was indicated in 34 studies (41%), but in 25 (73%) of these trials, this dose was chosen without considering toxicity as the main selection criterion. CONCLUSION: This literature review highlights the broad design heterogeneity of FIH trials testing mAbs. Because of the limited observed toxicity, the MTD was infrequently reached, and therefore, the recommended phase II dose for subsequent clinical trials was only tentatively defined.
Resumo:
Chromosomal aberrations (CA) and sister-chromatid exchanges (SCE) were investigated in peripheral lymphocytes of 15 nurses and nurse's aides handling cytostatic agents in hospital oncology units. Significantly increased frequencies were noted for both CA and SCE rates when the exposed individuals were compared with 15 nurses working in other hospital units and to a control sample matched by sex and age. This points to the need for emphasizing protective measures in the handling of anti-neoplastic agents.
Resumo:
Risk assessment considerations - The concept that “safe levels of exposure” for humans can be identified for individual chemicals is central to the risk assessment of compounds with known toxicological profiles. Selection of agents for combination chemotherapy regimens involves minimize overlapping of mechanisms of action, antitumor activity and toxicity profile. Although the toxicological profile and mechanism of action of each individual drug is well characterized, the toxicological interactions between drugs are likely, but poorly established at occupational exposure context. The synergistic nature of interactions may help in understanding the adverse health effects observed in healthcare workers, where exposure situations are characterized by complex mixtures of chemical agents, and the levels of individual exposing agents are often not sufficiently high to explain the health complaints. However, if a substance is a genotoxic carcinogen, this would be the “lead effect”; normally, no OEL based on a NOEL would be derived and the level would be set so low that it would be unlikely that other effects would be expected. Aim of the study - Recently research project developed in Portuguese Hospitals characterize the occupational exposure to antineoplastic agents and the health effects related. The project aimed to assess exposure of the different risk groups that handle antineoplastic agents in the hospital setting, namely during preparation and administration of these drugs. Here it is presented and discussed the results in a study developed in two hospitals from Lisbon.
Resumo:
Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Resumo:
Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials.
Resumo:
Saccharomyces cerevisiae has been used in genotoxicity and cytotoxicity assays for several years before the Ames Test approach. However the cell permeability of yeast has been considered a limitant factor to this kind of assay and many researchers have been introducing genetic modifications into wild strains to improve the sensitivity to chemical compounds. In our study, we used Saccharomyces cerevisiae ATCC 9763, well known and very common strain in antibiotic assays, and we evaluated the cytotoxicity of some antineoplastic agents (etoposide, epirubicin, carboplatin, cisplatin and mitoxantrone). Each culture was observed under the light of microscope and photographed. Neither genetic modification nor addition of permeation inducers, as dimethylsulfoxide (DMSO), were introduced during the assays and the cells presented good sensitivity to those compounds, demonstrating that other potential strains and characteristics of cells should be reconsidered to improve these assays apart from the cellular permeability.
Resumo:
Dolastatin units were synthesized from the 1,2-addition reactions of potassium allyl or crotyltrifluoroborate salts to aldehyde derivatives from natural amino acids. The reactions were carried out in presence of a phase-transfer catalyst in a biphasic medium at room temperature and excellent yields (>89-93%) and stereoselective (>90:10 to 98:2) were obtained. The dolastatin units 8 and 14a-b were obtained after three steps in good overall yields (50-62%). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.
Resumo:
The use of multiparametric magnetic resonance imaging (mp-MRI) for prostate cancer has increased over recent years, mainly for detection, staging, and active surveillance. However, suspicion of recurrence in the set of biochemical failure is becoming a significant reason for clinicians to request mp-MRI. Radiologists should be able to recognize the normal post-treatment MRI findings. Fibrosis and atrophic remnant seminal vesicles after prostatectomy are often found and must be differentiated from local relapse. Moreover, brachytherapy, external beam radiotherapy, cryosurgery, and hormonal therapy tend to diffusely decrease the signal intensity of the peripheral zone on T2-weighted images (T2WI) due to the loss of water content, consequently mimicking tumor and hemorrhage. The combination of T2WI and functional studies like diffusion-weighted imaging and dynamic contrast-enhanced improves the identification of local relapse. Tumor recurrence tends to restrict on diffusion images and avidly enhances after contrast administration either within or outside the gland. The authors provide a pictorial review of the normal findings and the signs of local tumor relapse after radical prostatectomy, external beam radiotherapy, brachytherapy, cryosurgery, and hormonal therapy.
Resumo:
Oral busulfan is the historical backbone of the busulfan+cyclophosphamide regimen for autologous stem cell transplantation. However intravenous busulfan has more predictable pharmacokinetics and less toxicity than oral busulfan; we, therefore, retrospectively analyzed data from 952 patients with acute myeloid leukemia who received intravenous busulfan for autologous stem cell transplantation. Most patients were male (n=531, 56%), and the median age at transplantation was 50.5 years. Two-year overall survival, leukemia-free survival, and relapse incidence were 67±2%, 53±2%, and 40±2%, respectively. The non-relapse mortality rate at 2 years was 7±1%. Five patients died from veno-occlusive disease. Overall leukemia-free survival and relapse incidence at 2 years did not differ significantly between the 815 patients transplanted in first complete remission (52±2% and 40±2%, respectively) and the 137 patients transplanted in second complete remission (58±5% and 35±5%, respectively). Cytogenetic risk classification and age were significant prognostic factors: the 2-year leukemia-free survival was 63±4% in patients with good risk cytogenetics, 52±3% in those with intermediate risk cytogenetics, and 37 ± 10% in those with poor risk cytogenetics (P=0.01); patients ≤50 years old had better overall survival (77±2% versus 56±3%; P<0.001), leukemia-free survival (61±3% versus 45±3%; P<0.001), relapse incidence (35±2% versus 45±3%; P<0.005), and non-relapse mortality (4±1% versus 10±2%; P<0.001) than older patients. The combination of intravenous busulfan and high-dose melphalan was associated with the best overall survival (75±4%). Our results suggest that the use of intravenous busulfan simplifies the autograft procedure and confirm the usefulness of autologous stem cell transplantation in acute myeloid leukemia. As in allogeneic transplantation, veno-occlusive disease is an uncommon complication after an autograft using intravenous busulfan.
Resumo:
The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.