972 resultados para Antineoplastic Agents, Alkylating


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temozolomide (Temodal, Temodar), an imidazol derivative, is a second-generation alkylating agent. The orally available prodrug with the capacity of crossing the blood-brain barrier received accelerated US FDA approval in 1999. Three pivotal Phase II trials showed modest activity in the treatment of recurrent anaplastic astrocytoma glioblastoma. In 2005, the FDA and the European Agency for the Evaluation of Medicinal Products approved temozolomide for use in newly diagnosed glioblastoma, in conjunction with radiotherapy, based on an European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada Phase III trial. The adverse events associated with temozolomide are mild-to-moderate and generally predictable; the most serious are noncumulative and reversible myelosuppression and, in particular, thrombocytopenia, which occurs in less than 5% of patients. Continuous temozolomide administration is associated with profound CD4-selective lymphocytopenia. Molecular studies have suggested that the benefit of temozolomide chemotherapy is restricted to patients whose tumors have a methylated methylguanine methyltransferase gene promotor and are thus unable to repair some of the chemotherapy-induced DNA damage. Temozolomide is under investigation for other disease entities, in particular lower-grade glioma, brain metastases and melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme is the most common and most malignant primary brain tumour with a dismal prognosis. The advent of new chemotherapies with alkylating agents crossing the blood-brain barrier, like temozolomide, have permitted to notably ameliorate the survival of a subgroup of patients. Improved outcome was associated with epigenetic silencing of the MGMT (O6-methylguanin methyltransferase) gene by promotor methylation, thereby blocking its repair capability, thus rendering the alkylating agents more effective. This particularity can be tested by methylation specific PCR on resected tumour tissue, best on fresh frozen biopsies, and allows identification of patients more susceptible to respond favourably to the treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study was performed to determine the impact of perfusion and diffusion magnetic resonance imaging (MRI) sequences on patients during treatment of newly diagnosed glioblastoma. Special emphasis has been given to these imaging technologies as tools to potentially anticipate disease progression, as progression-free survival is frequently used as a surrogate endpoint. METHODS AND MATERIALS: Forty-one patients from a phase II temolozomide clinical trial were included. During follow-up, images were integrated 21 to 28 days after radiochemotherapy and every 2 months thereafter. Assessment of scans included measurement of size of lesion on T1 contrast-enhanced, T2, diffusion, and perfusion images, as well as mass effect. Classical criteria on tumor size variation and clinical parameters were used to set disease progression date. RESULTS: A total of 311 MRI examinations were reviewed. At disease progression (32 patients), a multivariate Cox regression determined 2 significant survival parameters: T1 largest diameter (p < 0.02) and T2 size variation (p < 0.05), whereas perfusion and diffusion were not significant. CONCLUSION: Perfusion and diffusion techniques cannot be used to anticipate tumor progression. Decision making at disease progression is critical, and classical T1 and T2 imaging remain the gold standard. Specifically, a T1 contrast enhancement over 3 cm in largest diameter together with an increased T2 hypersignal is a marker of inferior prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Adding temozolomide (TMZ) to standard radiotherapy as a first-line therapy for glioma may increase costs to a disproportionate degree compared with the resulting survival benefits. METHODS: Forty-six consecutive patients (28 males and 18 females; median age, 52 years; age range, 24-70 years) received concomitant TMZ with radiotherapy for 6 weeks followed by adjuvant TMZ for 6 cycles, and they were followed until disease recurrence and then until death. The authors assessed the costs associated with the four phases of treatment from a hospital-centered perspective. RESULTS: Treatment was discontinued early in 3 patients, 9 patients, and 15 patients during concomitant TMZ, before adjuvant TMZ, and during adjuvant TMZ, respectively. Karnofsky index values varied between 85% (at the beginning of treatment) and 76% (at the end of treatment). The nature of care after disease recurrence was diverse. Overall survival ranged from 1.4 months to 64.3 months (median, 15.8 months) and was better if surgical debulking could be carried out before treatment. Global costs amounted to Euros 39,092 +/- Euros 21,948 (concomitant TMZ, Euros 14,539 +/- Euros 4998; adjuvant TMZ, Euros 13,651 +/- Euros 4320; follow-up, Euros 6363 +/- Euros 6917; and recurrence, Euros 12,344 +/- Euros 18,327), with 53% of these costs being related to the acquisition of TMZ; this represented an eightfold increase in cost compared with radiotherapy alone. CONCLUSIONS: TMZ may be an effective but costly adjuvant outpatient therapy for patients with glioblastoma multiforme. Definite cost-effectiveness/utility must be assessed in a randomized Phase III trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) antagonizes the genotoxic effects of alkylating agents. MGMT promoter methylation is the key mechanism of MGMT gene silencing and predicts a favorable outcome in patients with glioblastoma who are exposed to alkylating agent chemotherapy. This biomarker is on the verge of entering clinical decision-making and is currently used to stratify or even select glioblastoma patients for clinical trials. In other subtypes of glioma, such as anaplastic gliomas, the relevance of MGMT promoter methylation might extend beyond the prediction of chemosensitivity, and could reflect a distinct molecular profile. Here, we review the most commonly used assays for evaluation of MGMT status, outline the prerequisites for standardized tests, and evaluate reasons for difficulties in reproducibility. We critically discuss the prognostic and predictive value of MGMT silencing, reviewing trials in which patients with different types of glioma were treated with various chemotherapy schedules, either up-front or at recurrence. Standardization of MGMT testing requires comparison of different technologies across laboratories and prospectively validated cut-off values for prognostic or predictive effects. Moreover, future clinical trials will need to determine, for each subtype of glioma, the degree to which MGMT promoter methylation is predictive or prognostic, and whether testing should become routine clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to alkylating agents via direct DNA repair by O(6)-methylguanine methyltransferase (MGMT) remains a significant barrier to the successful treatment of patients with malignant glioma. The relative expression of MGMT in the tumor may determine response to alkylating agents, and epigenetic silencing of the MGMT gene by promoter methylation plays an important role in regulating MGMT expression in gliomas. MGMT promoter methylation is correlated with improved progression-free and overall survival in patients treated with alkylating agents. Strategies to overcome MGMT-mediated chemoresistance are being actively investigated. These include treatment with nontoxic pseudosubstrate inhibitors of MGMT, such as O(6)-benzylguanine, or RNA interference-mediated gene silencing of MGMT. However, systemic application of MGMT inhibitors is limited by an increase in hematologic toxicity. Another strategy is to deplete MGMT activity in tumor tissue using a dose-dense temozolomide schedule. These alternative schedules are well tolerated; however, it remains unclear whether they are more effective than the standard dosing regimen or whether they effectively deplete MGMT activity in tumor tissue. Of note, not all patients with glioblastoma having MGMT promoter methylation respond to alkylating agents, and even those who respond will inevitably experience relapse. Herein we review the data supporting MGMT as a major mechanism of chemotherapy resistance in malignant gliomas and describe ongoing studies that are testing resistance-modulating strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to assess the pharmacology, toxicity and activity of high-dose ifosfamide mesna +/- GM-CSF administered by a five-day continuous infusion at a total ifosfamide dose of 12-18 g/m2 in adult patients with advanced sarcomas. PATIENTS AND METHODS: Between January 1991 and October 1992 32 patients with advanced or metastatic sarcoma were entered the study. Twenty-seven patients were pretreated including twenty-three with prior ifosfamide at less than 8 g/m2 total dose/cycle. In 25 patients (27 cycles) extensive pharmacokinetic analyses were performed. RESULTS: The area under the plasma concentration-time curve (AUC) for ifosfamide increased linearly with dose while the AUC's of the metabolites measured in plasma by thin-layer chromatography did not increase with dose, particularly that of the active metabolite isophosphoramide mustard. Furthermore the AUC of the inactive carboxymetabolite did not increase with dose. Interpatient variability of pharmacokinetic parameters was high. Dose-limiting toxicity was myelosuppression at 18 g/m2 total dose with grade 4 neutropenia in five of six patients and grade 4 thrombocytopenia in four of six patients. Therefore the maximum tolerated dose was considered to be 18 g/m2 total dose. There was one CR and eleven PR in twenty-nine evaluable patients (overall response rate 41%). CONCLUSION: Both the activation and inactivation pathways of ifosfamide are non-linear and saturable at high-doses although the pharmacokinetics of the parent drug itself are dose linear. Ifosfamide doses greater than 14-16 g/m2 per cycle appear to result in a relative decrease of the active metabolite isophosphoramide mustard. These data suggest a dose-dependent saturation or even inhibition of ifosfamide metabolism by increasing high dose ifosfamide and suggest the need for further metabolic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To perform a systematic review on the costs and cost-effectiveness of concomitant and adjuvant temozolomide with radiotherapy for the treatment of newly diagnosed glioblastoma compared with initial radiotherapy alone. METHODS: Electronic databases were searched for relevant publications on costs and cost-effectiveness until October 2008. RESULTS: We found four relevant clinical trials, one cost study and two economic models. The mean survival benefit in the radiotherapy plus temozolomide group varied between 0.21 and 0.25 life-years. Treatment costs were between 27,365 euros and 39,092 euros. The costs of temozolomide amounted to approximately 40% of the total treatment costs. The incremental cost-effectiveness ratios found in the literature were 37,361 euros per life-year gained and 42,912 euros per quality-adjusted life-year gained. However, the models are not comparable because different outcomes are used (i.e., life-years and quality-adjusted life-years). CONCLUSION: Although the models are not comparable according to outcome, the incremental cost-effectiveness ratios found are within acceptable ranges. We concluded that despite the high temozolomide acquisition costs, the costs per life-year gained and the costs per quality-adjusted life-year gained are comparable with other accepted first-line treatments with chemotherapy in patients with cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated limb perfusion (ILP) with melphalan and tumor necrosis factor (TNF)-α is used to treat bulky, locally advanced melanoma and sarcoma. However, TNF toxicity suggests a need for better-tolerated drugs. Cilengitide (EMD 121974), a novel cyclic inhibitor of alpha-V integrins, has both anti-angiogenic and direct anti-tumor effects and is a possible alternative to TNF in ILP. In this study, rats bearing a hind limb soft tissue sarcoma underwent ILP using different combinations of melphalan, TNF and cilengitide in the perfusate. Further groups had intra-peritoneal (i.p.) injections of cilengitide or saline 2 hr before and 3 hr after ILP. A 77% response rate (RR) was seen in animals treated i.p. with cilengitide and perfused with melphalan plus cilengitide. The RR was 85% in animals treated i.p. with cilengitide and ILP using melphalan plus both TNF and cilengitide. Both RRs were significantly greater than those seen with melphalan or cilengitide alone. Histopathology showed that high RRs were accompanied by disruption of tumor vascular endothelium and tumor necrosis. Compared with ILP using melphalan alone, the addition of cilengitide resulted in a three to sevenfold increase in melphalan concentration in tumor but not in muscle in the perfused limb. Supportive in vitro studies indicate that cilengitide both inhibits tumor cell attachment and increases endothelial permeability. Since cilengitide has low toxicity, these data suggest the agent is a good alternative to TNF in the ILP setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background And Objectives: Isolated limb perfusion with TNF-alpha and melphalan (TM-ILP) is a limb salvage therapy for non-resectable soft tissue sarcomas (STS) of the extremities. It is indicated for patients for whom amputation or debilitating surgery is the only alternative. It can be used either as an exclusive therapy (in palliation) or as a neo-adjuvant treatment, followed by marginal resection of tumor remnants with minimal functional impairment. Methods: Between February 1992 and March 2006, 57 TM-ILPs were performed on 51 patients with 88% high grade and 84% advanced stage tumors. Results: Mean follow-up is 38.9 months (4-159, median 22 months). Twenty-one percent patients had significant early complications, with 3 major re-operations, and 23% suffered long-lasting complications. Complete response was observed in 25%, partial response in 42%, stable disease in 14% and progressive disease in 14%. Resection of the tumor remnants was possible in 65%. A complementary treatment was necessary in 31%, mostly radiation therapy. A local recurrence was observed in 35%, after a mean of 20.3 months (2-78), and distant relapse was seen in 45%, after a mean of 13.4 months (5-196). Mean Disease-free survival was 14.9 months, and overall 5-year-survival 43.5%. Amputation rate at 5 years was 24%. Conclusions: TM-ILP is a conservative treatment with a high complications rate, but it can be successful even for the most severe STS of extremities. As a consequence the limb can be spared from amputation or debilitating surgery on the long term in about 75% of patients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: A 55-year-old man with glioblastoma multiforme was treated with continuous, dose-dense temozolomide. This therapy was curtailed after three cycles because of nausea, asthenia, and neuropsychological deterioration. During a subsequent course of radiotherapy, the patient developed fever, headaches, and cutaneous lesions. INVESTIGATIONS: Physical examination, cerebral MRI, brain biopsy, skin biopsy, immunohistochemistry, bronchoscopy with bronchoalveolar lavage, and laboratory tests. DIAGNOSIS: Severe temozolomide-induced immunosuppression, exacerbated by corticosteroids, with profound T-cell lymphocytopenia and simultaneous opportunistic infections with Pneumocystis jiroveci pneumonia, brain abscess with Listeria monocytogenes, and cutaneous Kaposi's sarcoma. MANAGEMENT: Discontinuation of temozolomide, discontinuation of radiotherapy, antibiotic treatment with amoxicillin and gentamicin, and administration of atovaquone and pentamidine.