999 resultados para Antilock brake systems.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Heavy goods vehicles exhibit poor braking performance in emergency situations when compared to other vehicles. Part of the problem is caused by sluggish pneumatic brake actuators, which limit the control bandwidth of their antilock braking systems. In addition, heuristic control algorithms are used that do not achieve the maximum braking force throughout the stop. In this article, a novel braking system is introduced for pneumatically braked heavy goods vehicles. The conventional brake actuators are improved by placing high-bandwidth, binary-actuated valves directly on the brake chambers. A made-for-purpose valve is described. It achieves a switching delay of 3-4 ms in tests, which is an order of magnitude faster than solenoids in conventional anti-lock braking systems. The heuristic braking control algorithms are replaced with a wheel slip regulator based on sliding mode control. The combined actuator and slip controller are shown to reduce stopping distances on smooth and rough, high friction (μ = 0.9) surfaces by 10% and 27% respectively in hardware-in-the-loop tests compared with conventional ABS. On smooth and rough, low friction (μ = 0.2) surfaces, stopping distances are reduced by 23% and 25%, respectively. Moreover, the overall air reservoir size required on a heavy goods vehicle is governed by its air usage during an anti-lock braking stop on a low friction, smooth surface. The 37% reduction in air usage observed in hardware-in-the-loop tests on this surface therefore represents the potential reduction in reservoir size that could be achieved by the new system. © 2012 IMechE.
Resumo:
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. ©2011 by the authors.
Resumo:
La rápida adopción de dispositivos electrónicos en el automóvil, ha contribuido a mejorar en gran medida la seguridad y el confort. Desde principios del siglo 20, la investigación en sistemas de seguridad activa ha originado el desarrollo de tecnologías como ABS (Antilock Brake System), TCS (Traction Control System) y ESP (Electronic Stability Program). El coste de despliegue de estos sistemas es crítico: históricamente, sólo han sido ampliamente adoptados cuando el precio de los sensores y la electrónica necesarios para su construcción ha caído hasta un valor marginal. Hoy en día, los vehículos a motor incluyen un amplio rango de sensores para implementar las funciones de seguridad. La incorporación de sistemas que detecten la presencia de agua, hielo o nieve en la vía es un factor adicional que podría ayudar a evitar situaciones de riesgo. Existen algunas implementaciones prácticas capaces de detectar carreteras mojadas, heladas y nevadas, aunque con limitaciones importantes. En esta tesis doctoral, se propone una aproximación novedosa al problema, basada en el análisis del ruido de rodadura generado durante la conducción. El ruido de rodadura es capturado y preprocesado. Después es analizado utilizando un clasificador basado en máquinas de vectores soporte (SVM), con el fin de generar una estimación del estado del firme. Todas estas operaciones se realizan en el propio vehículo. El sistema propuesto se ha desarrollado y evaluado utilizando Matlabr, mostrando tasas de aciertos de más del 90%. Se ha realizado una implementación en tiempo real, utilizando un prototipo basado en DSP. Después se han introducido varias optimizaciones para permitir que el sistema sea realizable usando un microcontrolador de propósito general. Finalmente se ha realizado una implementación hardware basada en un microcontrolador, integrándola estrechamente con las ECU del vehículo, pudiendo obtener datos capturados por los sensores del mismo y enviar las estimaciones del estado del firme. El sistema resultante ha sido patentado, y destaca por su elevada tasa de aciertos con un tamaño, consumo y coste reducidos. ABSTRACT Proliferation of automotive electronics, has greatly improved driving safety and comfort. Since the beginning of the 20th century, investigation in active safety systems has resulted in the development of technologies such as ABS (Antilock Brake System), TCS (Traction Control System) and ESP (Electronic Stability Program). Deployment cost of these systems is critical: historically, they have been widely adopted only when the price of the sensors and electronics needed to build them has been cut to a marginal value. Nowadays, motor vehicles include a wide range of sensors to implement the safety functions. Incorporation of systems capable of detecting water, ice or snow on the road is an additional factor that could help avoiding risky situations. There are some implementations capable of detecting wet, icy and snowy roads, although with important limitations. In this PhD Thesis, a novel approach is proposed, based on the analysis of the tyre/road noise radiated during driving. Tyre/road noise is captured and pre-processed. Then it is analysed using a Support Vector Machine (SVM) based classifier, to output an estimation of the road status. All these operations are performed on-board. Proposed system is developed and evaluated using Matlabr, showing success rates greater than 90%. A real time implementation is carried out using a DSP based prototype. Several optimizations are introduced enabling the system to work using a low-cost general purpose microcontroller. Finally a microcontroller based hardware implementation is developed. This implementation is tightly integrated with the vehicle ECUs, allowing it to obtain data captured by its sensors, and to send the road status estimations. Resulting system has been patented, and is notable because of its high hit rate, small size, low power consumption and low cost.
Resumo:
Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3ms and orifice diameters around 8mm provide the best performance. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations
Resumo:
This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations
Resumo:
Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.