936 resultados para Antiferromagnetic resonance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EPR study of both blue and green sapphire samples confirms the presence of Cr(III) in four different octahedral sites. The g (1.98) value is the same but D values differ for the two the samples. The EPR spectra suggest that the blue sapphire contains more chromium than the green sapphire. No Fe(III) impurity was noted in the EPR spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A zoisite group of mineral samples from different localities are used in the present study. An EPR study on powdered samples confirms the presence of Mn(II), Fe(III) and Cr(III) in the minerals. NIR studies confirm the presence of these ions in the minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of my most powerful spiritual experiences have come from the splendorous and sublime sounding hymns performed by a choir and church organ at the traditional Anglican church I’ve attended since I was very young. In the later stage of my life, my pursuit of education in the field of engineering caused me to move to Australia where I regularly attended a contemporary evangelical church and subsequently became a music director in the faith community. This environmental and cultural shift altered my perception and musical experiences of Christian music and led me to enquire about the relationship between Christian liturgy and church music. Throughout history church musicians and composers have synthesised the theological, congregational, cultural and musical aspects of church liturgy. Many great composers have taken into account the conditions surrounding the process of sacred composition and arrangement of music to enhance the experience of religious ecstasy – they sought resonances with Christian values and beliefs to draw congregational participation into the light of praising and glorifying God. As a music director in an evangelical church this aspiration has become one I share. I hope to identify and define the qualities of these resonances that have been successful and apply them to my own practice. Introduction and Structure of the Thesis In this study I will examine four purposively selected excerpts of Christian church vocal music combining theomusicological and semiotic analysis to help identify guidelines that might be useful in my practice as a church music director. The four musical excerpts have been selected based upon their sustained musical and theological impact over time, and their ability to affect ecstatic responses from congregations. This thesis documents a personal journey through analysis of music and uses a context that draws upon ethno-musicological, theological and semiotic tools that lead to a preliminary framework and principles which can then be applied to the identified qualities of resonance in church music today. The thesis is comprised of four parts. Part 1 presents a literature study on the relationship between sacred music, the effects of religious ecstasy and the Christian church. Multiple lenses on this phenomenon are drawn from the viewpoints of prominent western church historians, Biblical theologians, and philosophers. The literature study continues in Part 2, where the role of embodiment is examined from the current perspective of cognitive learning environments. This study offers a platform for a critical reflection on two distinctive musical liturgical systems that have treated differently the notion of embodied understanding amidst a shifting church paradigm. This allows an in-depth theological and philosophical understanding of the liturgical conditions around sacred music-making that relates to the monistic and dualistic body/mind. Part 3 involves undertaking a theomusicological methodology that utilises creative case studies of four purposively selected spiritual pieces. A semiotic study focuses on specific sections of sacred vocal works that express the notions of ‘praise’ and ‘glorification’, particularly in relation to these effects,which combine an analysis of theological perspectives around religious ecstasy and particular spiritual themes. Part 4 presents the critiques and findings gathered from the study that incorporate theoretical and technological means to analyse the purposive selected musical artefact, particularly with the sonic narratives expressing notions of ‘Praise' and 'Glory’. The musical findings are further discussed in relation to the notion of resonance, and then a conceptual framework for the role of contemporary musicdirector is proposed. The musical and Christian terminologies used in the thesis are explained in the glossary, and the appendices includes tables illustrating the musical findings, conducted surveys, written musical analyses and audio examples of selected sacred pieces available on the enclosed compact disc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the opportunity, presented by the forthcoming charity law review in Northern Ireland, for adjusting the charity law framework so as to focus charitable activity on the circumstances typical of societies in conflict or experiencing transition. This opportunity is one for broadening the definition of 'charitable purpose' to include activities directed towards forestalling alienation and facilitating social inclusion. It would include rehabilitating the victims of social confrontation and developing related services of advocacy, mediation and reconciliation. It argues that a creative response to this opportunity could address the current social inclusion agenda and thereby contribute to the consolidation of civil society in this jurisdiction. It suggests that the experience in Northern Ireland, as an exemplar of a society in transition, has a resonance with the experience in Australia. It further suggests that it could also have a relevance for approaching the management of tensions within or between nations where people may otherwise come to perceive themselves as alienated...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen formalin-fixed foetal livers were scanned in vitro using a new system for estimating volume from a sequence of multiplanar 2D ultrasound images. Three different scan techniques were used (radial, parallel and slanted) and four volume estimation algorithms (ellipsoid, planimetry, tetrahedral and ray tracing). Actual liver volumes were measured by water displacement. Twelve of the sixteen livers also received x-ray computed tomography (CT) and magnetic resonance (MR) scans and the volumes were calculated using voxel counting and planimetry. The percentage accuracy (mean ± SD) was 5.3 ± 4.7%, −3.1 ± 9.6% and −0.03 ± 9.7% for ultrasound (radial scans, ray volumes), MR and CT (voxel counting) respectively. The new system may be useful for accurately estimating foetal liver volume in utero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this Editorial is recent developments in magnetic resonance imaging (MRI) modalities for evaluation of the microstructure and macromolecular organisation of articular cartilage. We place a specific emphasis on three types of measurements: (1) MRI transverse spin-relaxation mapping (T2 mapping); (2) diffusion-tensor imaging; and (3) compression micro-MRI (uMRI) measurements of articular cartilage in vitro. Such studies have a significant role to play in improving the understanding of the fundamental biomechanics of articular cartilage and in the development of in vitro models of early osteoarthritis. We discuss how the supramolecular organisation of the cartilage extracellular matrix and its behaviour under mechanical compression can be inferred from diffusion-tensor and T2 maps with in-plane resolution ~100 um. The emphasis is on in vitro studies performed under controlled physiological conditions but in vivo applications of T2 mapping and DTI are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.