967 resultados para Antibiotic Resistance
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infections. Thus, current levels of resistance to penicillin and cephalosporin seem to have little, if any, clinical relevance in nonmeningeal infections (e.g., pneumonia or bacteremia). On the contrary, numerous clinical failures have been reported in patients with pneumococcal meningitis caused by strains with MICs ≥ 0.12 μg/ml, and penicillin should never be used in pneumococcal meningitis except when the strain is known to be fully susceptible to this drug. Today, therapy for pneumococcal meningitis should mainly be selected on the basis of susceptibility to cephalosporins, and most patients may currently be treated with high-dose cefotaxime (±) vancomycin, depending on the levels of resistance in the patient's geographic area. In this review, we present a practical approach, based on current levels of antibiotic resistance, for treating the most prevalent pneumococcal infections. However, it should be emphasized that the most appropriate antibiotic therapy for infections caused by resistant pneumococci remains controversial, and comparative, randomized studies are urgently needed to clarify the best antibiotic therapy for these infections
Resumo:
The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.
Resumo:
This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary.
Resumo:
A total of eighty-one Escherichia coli isolates belonging to forty-three different serotypes including several pathogenic strains such as enterotoxigenic E. coli (ETEC), enterohaemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC) and uropathogenic E. coli (UPEC) isolated from Cochin estuary between November 2001 and October 2002 were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance (MAR) and antimicrobial resistance profiles as a measure of high risk source of contamination. The results revealed that more than 95% of the isolates were multiple antibiotic resistant (resistant to more than three antibiotics). The MAR indexing of the isolates showed that all these strains originated from high risk source of contamination. The incidence of multiple antibiotic resistant E. coli especially the pathogenic strains in natural waters will pose a serious threat to human population
Resumo:
Motile aeromonads isolated from the intestines of farm-raised freshwater fish such as Catla catla, Labeo rohita and Ctenopharyngodon idella have been characterized to species level. Morphological and physiological grouping revealed 61% Aeromonas hydrophila, 30% Aeromonas caviae, 7% Aeromonas sobria and 2% which remained unidentified. Hemolytic activity was detected mostly in A. hydrophila, while only half of the A. sobria and A. caviae showed this activity. Antibiotic resistance patterns of the strains revealed that they had acquired a relatively higher resistance to oxytetracycline, amoxycillin, ampicillin, novobiocin and polymixin-B, implicating possible use of these antibiotics in the aquaculture systems.
Resumo:
A total of 319 strains of Aeromonas hydrophila were isolated from 536 fish and 278 prawns for a 2-year period. All the strains were tested for resistance to 15 antibiotics and 100% of the strains was resistant to methicillin and rifampicin followed by bacitracin and novobiocin (99%). Only 3% of the strains exhibited resistance against chloramphenicol. The multiple antibiotic resistance (MAR) indexing of A. hydrophila strains showed that all of them originated from high-risk sources
Resumo:
Objectives: AcrA can function as the periplasmic adaptor protein (PAP) in several RND tripartite efflux pumps, of which AcrAB-TolC is considered the most important. This system confers innate multiple antibiotic resistance. Disruption of acrB or tolC impairs the ability of Salmonella Typhimurium to colonize and persist in the host. The aim of this study was to investigate the role of AcrA alone in multidrug resistance and pathogenicity. Methods: The acrA gene was inactivated in Salmonella Typhimurium SL1344 by insertion of the aph gene and this mutant complemented with pWKS30acrA. The antimicrobial susceptibility of the mutant to six antibiotics as well as various dyes and detergents was determined. In addition, efflux activity was quantified. The ability of the mutant to adhere to, and invade, tissue culture cells in vitro was measured. Results: Following disruption of acrA, RT-PCR and western blotting confirmed that acrB/AcrB was still expressed when acrA was disrupted. The acrA mutant was hypersusceptible to antibiotics, dyes and detergents. In some cases, lower MICs were seen than for the acrB or tolC mutants. Efflux of the fluorescent dye Hoechst H33342 was less than in wild-type following disruption of acrA. acrA was also required for adherence to, and invasion of, tissue culture cells. Conclusions: Inactivation of acrA conferred a phenotype distinct to that of acrB::aph and tolC::aph. These data indicate a role for AcrA distinct to that of other protein partners in both efflux of substrates and virulence.
Resumo:
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfect ants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of map in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.
Resumo:
Since 1990 multiresistant (MR) Salmonella enterica serotype Typhimurium definitive phage-type (DT) 104 (MR DT104) and closely related phage types have emerged as a worldwide health problem in humans and food animals. In this study the presence of the bla(CARB-2) (ampicillin), cmlA (chloramphenicol), aadA2 (streptomycin/spectinomycin), sul1 (sulphonamide), and tetG (tetracycline) resistance genes in isolates of one such phage type, U302, have been determined. In addition bla(TEM) I primers have been used for the detection of TEM-type beta-lactamases. Isolates have also been characterized by plasmid profile and pulsed field gel electrophoresis (PFGE). Thirty-three of 39 isolates were positive for blaCARB-2, cmlA, aadA2, sul1 and tetG, four for bla(TEM), aadA2 and sul1, one for aadA2 and sul1, and one for blaTEM only. bla(TEM)-mediated ampicillin resistance was transferred to Escherichia coli K12 from three isolates along with other resistance markers, including resistance to chloramphenicol, streptomycin, spectinomycin, sulphonamides, and tetracyclines. Strains carried up to 6 plasmids and 34 plasmid profiles were identified. Although the majority of strains (33/39) produced a PFGE profile identical to that predominant in MR DT104, six different patterns were generated demonstrating the presence of various clones within MR U302. The results show that the majority of the MR U302 strains studied possessed the same antibiotic resistance genes as MR DT104. However, isolates with distinctive PFGE patterns can have different mechanisms of resistance to ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracyclines. Such resistance genes may be borne on transmissible plasmids.
Resumo:
Chromosomally encoded systems involved in low level resistance of bacteria to different classes of antibiotics (mainly beta-lactams, chloramphenicol, quinolones and tetracycline), disinfectants and in resistance to organic solvents have been the focus of considerable interest in recent years. The multiple antibiotic resistance (mar) locus of Escherichia coli and Salmonella is perhaps the best described system involved in this type of resistance which is induced by MarA, the activator protein encoded by the marRAB locus. The mar-locus is reported to mediate resistance primarily by up-regulating efflux of some antibiotics, disinfectants and organic solvents via the AcrAB-TolC efflux pump and down regulating influx through Outer Membrane Protein F (OmpF). Whilst the level of antibiotic resistance conferred by marRAB is only low level, there are increasing data to suggest that marRAB and related systems are important in clinical antibiotic resistance, possibly as a 'stepping stone' to higher levels of resistance. Other related systems include up-regulation of RobA, SoxS and AcrAB which give rise to a similar resistance phenotype to that conferred by up-regulation of MarA. The aim of this paper is to review the function and significance of the mar-locus and related systems with a particular focus on its implications in veterinary medicine. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Aims: In view of recent findings that a multidrug efflux pump CmeABC exists in Campylobacter jejuni, 391 C. jejuni and 52 Campylobacter coli of human and animal origin were examined for a multidrug resistance phenotype. Materials and methods: The MICs of ampicillin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, tetracycline, cetrimide, triclosan, acridine orange, paraquat and ethidium bromide were determined. Resistance to organic solvents and the effect of salicylate (known inducer of the marRAB operon in Escherichia coli and Salmonella) were also examined. Results: Two C. coli and 13 C. jejuni isolates, mainly from pigs or poultry, were resistant to three or more antibiotics and 12 of these strains had reduced susceptibility to acridine orange and/or ethidium bromide. Strains (n=20) that were less susceptible to acridine orange, ethidium bromide and triclosan were significantly more resistant (P<0.05) to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, nalidixic acid and tetracycline, with two- to four-fold increases in MIC values compared with strains (n=20) most susceptible to acridine orange, ethidium bromide and triclosan. Growth of strains with 1 mM salicylate caused a small (up to two-fold) but statistically significant (Pless than or equal to0.005) increase in the MICs of chloramphenicol, ciprofloxacin, erythromycin and tetracycline. Conclusions: These data indicate that multiple antibiotic resistant (MAR)-like Campylobacter strains occur and it may be postulated that these may overexpress cmeABC or another efflux system.