917 resultados para Anthropomorphic robots
Resumo:
The application of high-speed machine vision for close-loop position control, or visual servoing, of a robot manipulator. It provides a comprehensive coverage of all aspects of the visual servoing problem: robotics, vision, control, technology and implementation issues. While much of the discussion is quite general the experimental work described is based on the use of a high-speed binary vision system with a monocular "eye-in-hand" camera.
Resumo:
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.
Resumo:
Motivated by the growing interest in unmanned aerial system’s applications in indoor and outdoor settings and the standardisation of visual sensors as vehicle payload. This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. It will achieve a minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing-only visual servoing approach. We provide theoretical problem formulation, as well as results from real flight using small quadrotors.
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
This pilot study aimed to compare the effect of companion robots (PARO) to participation in an interactive reading group on emotions in people living with moderate to severe dementia in a residential care setting. A randomized crossover design, with PARO and reading control groups, was used. Eighteen residents with mid- to late-stage dementia from one aged care facility in Queensland, Australia, were recruited. Participants were assessed three times using the Quality of Life in Alzheimer’s Disease, Rating Anxiety in Dementia, Apathy Evaluation, Geriatric Depression, and Revised Algase Wandering Scales. PARO had a moderate to large positive influence on participants’ quality of life compared to the reading group. The PARO intervention group had higher pleasure scores when compared to the reading group. Findings suggest PARO may be useful as a treatment option for people with dementia; however, the need for a larger trial was identified.
Resumo:
This paper is concerned with the unsupervised learning of object representations by fusing visual and motor information. The problem is posed for a mobile robot that develops its representations as it incrementally gathers data. The scenario is problematic as the robot only has limited information at each time step with which it must generate and update its representations. Object representations are refined as multiple instances of sensory data are presented; however, it is uncertain whether two data instances are synonymous with the same object. This process can easily diverge from stability. The premise of the presented work is that a robot's motor information instigates successful generation of visual representations. An understanding of self-motion enables a prediction to be made before performing an action, resulting in a stronger belief of data association. The system is implemented as a data-driven partially observable semi-Markov decision process. Object representations are formed as the process's hidden states and are coordinated with motor commands through state transitions. Experiments show the prediction process is essential in enabling the unsupervised learning method to converge to a solution - improving precision and recall over using sensory data alone.
Resumo:
Our everyday environment is full of text but this rich source of information remains largely inaccessible to mobile robots. In this paper we describe an active text spotting system that uses a small number of wide angle views to locate putative text in the environment and then foveates and zooms onto that text in order to improve the reliability of text recognition. We present extensive experimental results obtained with a pan/tilt/zoom camera and a ROS-based mobile robot operating in an indoor environment.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.
Resumo:
We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.
Resumo:
Anthropomorphism is a cognitive bias, which occurs when individuals see human characteristics in a non-human agent, object or animal. Anthropomorphism is especially interesting to marketers, because once anthropomorphic bias has been triggered, it can lead to a greater feeling of connectedness to a non-human agent (Tam, Lee and Chao, 2013), the emulation of behaviours (Aggarwal and McGill, 2012) or greater attribution of brand personality and brand liking (Delbaere, McQuarrie and Phillips, 2011). Importantly, research now shows that levels of this tendency vary between individuals (Waytz, Cacioppo and Epley, 2010), but research to date has failed to focus on how anthropomorphic tendency influences individual responses to marketing communications messages. Spokes-characters present an ideal context through which to examine this gap, given that they function as personified brands, designed to trigger consumer anthropomorphic tendency. Further, little is understood about how spokes-characters operate and which consumers will prefer them to their human counterparts. Like anthropomorphic research, much empirical work to date has focused on design and outcomes, examining the sender’s encoding process and the feedback generated, but ignoring the individual decoding process that is so important to understanding individual differences and message effectiveness. The current research employs three experiments using an online survey with stimulus exposure to show that anthropomorphic tendency, personality similarity and spokes-character type all have relevance to the understanding of this complex relationship. Study one and two indicate that while a human spokesperson is still preferred by many, higher levels of anthropomorphic tendency increase likeability of cartoon spokes characters. Study three highlights the importance of personality similarity, which further increases likability. Additional analyses provide key findings concerning the nature of anthropomorphic tendency as an individual difference and trait. This research contributes to a greater understanding of anthropomorphism theory and fills existing gaps in the consumer psychology and marketing communications literature.
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.