986 resultados para Ant abund
Resumo:
Of the five known incursions of the highly invasive Red Imported Fire Ant in Australia, two are regarded to have been eradicated. As treatment efforts continue, and the programme evolves and new tools become available, eradication is still considered to be feasible for the remaining Red Imported Fire Ant populations with long-term commitment and support.
Resumo:
Human actions cause destruction and fragmentation of natural habitats, predisposing populations to loss of genetic diversity and inbreeding, which may further decrease their fitness and survival. Understanding these processes is a main concern in conservation genetics. Yet data from natural populations is scarce, particularly on invertebrates, owing to difficulties in measuring both fitness and inbreeding in the wild. Ants are social insects, and a prime example of an ecologically important group for which the effects of inbreeding remain largely unstudied. Social insects serve key roles in all terrestrial ecosystems, and the division of labor between the females in the colonies queens reproduce, workers tend to the developing brood probably is central to their ecological success. Sociality also has important implications for the effects of inbreeding. Despite their relative abundance, the effective population sizes of social insects tend to be small, owing to the low numbers of reproductive individuals relative to the numbers of sterile workers. This may subject social insects to loss of genetic diversity and subsequent inbreeding depression. Moreover, both the workers and queens can be inbred, with different and possibly multiplicative consequences. The aim of this study was to investigate causes and consequences of inbreeding in a natural population of ants. I used a combination of long-term field and genetic data from colonies of the narrow-headed ant Formica exsecta to examine dispersal, mating behavior and the occurrence of inbreeding, and its consequences on individual and colony traits. Mating in this species takes place in nuptial flights that have been assumed to be population-wide and panmictic. My results, however, show that dispersal is local, with queens establishing new colonies as close as 60 meters from their natal colony. Even though actual sib-mating was rare, individuals from different but related colonies pair, which causes the population to be inbred. Furthermore, multiple mates of queens were related to each other, which also indicates localized mating flights. Hence, known mechanisms of inbreeding avoidance, dispersal and multiple mating, were not effective in this population, as neither reduced inbreeding level of the future colony. Inbreeding had negative consequences both at the individual and colony level. A queen that has mated with a related male produces inbred workers, which impairs the colony s reproductive success. The inbred colonies were less productive and, specifically, produced fewer new queens, possibly owing to effects of inbreeding on the caste determination of female larvae. A striking finding was that males raised in colonies with inbred workers were smaller, which reflects an effect of the social environment as males, being haploid, cannot be inbred themselves. The queens produced in the inbred colonies, in contrast, were not smaller, but their immune response was up-regulated. Inbreeding had no effect on queen dispersal, but inbred queens had a lower probability of successfully founding a new colony. Ultimately, queens that survived through the colony founding phase had a shorter lifespan. This supports the idea that inbreeding imposes a genetic stress, leading to inbreeding depression on both the queen and the colony level. My results show that inbreeding can have profound consequences on insects in the wild, and that in social species the effects of inbreeding may be multiplicative and mediated through the diversity of the social environment, as well as the genetic makeup of the individuals themselves. This emphasizes the need to take into account all levels of organization when assessing the effects of genetic diversity in social animals.
Resumo:
Social behaviour affects dispersal of animals and is an important modifier of genetic population structures. The female sex is often philopatric, which maintains coancestry within the breeding groups and promotes cooperative behaviours. This enables also inclusive fitness returns from altruism and explains why some individuals sacrifice personal reproduction for the good of others in social insects such as ants. However, reduced dispersal and population substructuring at the level of colonies may also entail inbreeding, loss of genetic diversity, and vulnerability. In addition, the most vulnerable ants are species that are evolved to parasitize colonies of other ants, and which compromise between abilities to disperse and the efficiency to parasitize the host. On the other hand, certain social organisations of ant colonies may facilitate a species to disperse outside its natural range and become a pest. Altogether, knowledge on genetic structuring of ant populations, as well as the evolution of their life histories can contribute to conservation biology and population management. The aim of this thesis was to investigate population structures and phylogenetic evolution of the ant Plagiolepis pygmaea and its two obligatory, workerless social parasites (inquilines) P. xene and P. grassei with genetic markers and DNA sequence data. The results support the general assumption that populations of inquiline parasites are highly fragmented and genetically vulnerable. Comparison of the two parasites suggests that differences in their relative abundance may follow from their interaction with the host, i.e. how well the species is adapted to reproduce in the host colonies. The results also indicate that the most recent free living ancestor to these two parasite species is their common host. This is considered to provide evidence for the controversial issue of sympatric speciation. Further, given that the level of adaptations to parasitic life history depends on the evolutionary time since the free-living ancestor, the results establish a link between species rarity and its evolutionary age. The populations of the host species P. pygmaea displayed significantly reduced dispersal both among the females (queens) and males, and high levels of inbreeding which may enhance worker altruism. In addition, the queens were found to mate with multiple males. Given the high relatedness between the queens and their mates, this occurs probably for non-genetic reasons, e.g. without benefits associated in genetically more diverse offspring. The results hence caution that the contribution of non-genetic factors to the prevailing mating patterns and genetic population structures should not be underestimated.
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
In a complex multitrophic plant-animal interaction system in which there are direct and indirect interactions between species, comprehending the dynamics of these multiple partners is very important for an understanding of how the system is structured. We investigated the plant Ficus racemosa L. (Moraceae) and its community of obligatory mutualistic and parasitic fig wasps (Hymenoptera: Chalcidoidea) that develop within the fig inflorescence or syconium, as well as their interaction with opportunistic ants. We focused on temporal resource partitioning among members of the fig wasp community over the development cycle of the fig syconia during which wasp oviposition and development occur and we studied the activity rhythm of the ants associated with this community. We found that the seven members of the wasp community partitioned their oviposition across fig syconium development phenology and showed interspecific variation in activity across the day-night cycle. The wasps presented a distinct sequence in their arrival at fig syconia for oviposition, with the parasitoid wasps following the galling wasps. Although fig wasps are known to be largely diurnal, we documented night oviposition in several fig wasp species for the first time. Ant activity on the fig syconia was correlated with wasp activity and was dependent on whether the ants were predatory or trophobiont-tending species; only numbers of predatory ants increased during peak arrivals of the wasps.
Resumo:
1. Habitat fragmentation, anthropogenic disturbance and the introduction of invasive species are factors thought to structure ant assemblages. To understand responses of the ant community to changes in the environment, ants are commonly categorised into functional groups, a scheme developed and based on Australian ants. 2. Behaviourally dominant and aggressive ants of the dominant dolichoderinae functional group have been suggested to structure the ant assemblages in arid and semi-arid habitats of these regions. Given the limited geographical distribution of dominant dolichoderinae, it is crucial to determine the responses of the ant community to changes in the environment in their absence. 3. This study addresses this less studied aspect by considering the associations of ants of Western Ghats, India, with habitat, anthropogenic disturbance and introduced ants. We determined how ant functional groups respond to these factors in this region, where dominant dolichoderines are naturally absent, and whether responses are consistent with predictions derived from the ant functional group scheme. 4. This study provides new information on ant assemblages in a little-studied region. As in other parts of the world, ant assemblages in Western Ghats were strongly influenced by habitat and disturbance, with different functional groups associated with different habitats and levels of disturbance. 5. No functional group showed evidence of being influenced by the abundance of introduced species. In addition, predictions of negative interactions between functional groups were not supported. Our findings suggest that abiotic factors are universal determinants of ant assemblage structure, but that competitive interactions may not be.
Resumo:
Ant-plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar: amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant-pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant-plant interactions.
Resumo:
Protection-based ant-plant mutualisms may vary in strength due to differences in ant rewards, abundance of protective ants and herbivory pressure. We investigated geographical and temporal variation in host plant traits and herbivory pressure at five sites spanning the distribution range of the myrmecophyte Humboldtia brunonis (Fabaceae) in the Indian Western Ghats. Southern siteshad, onaverage, 2.4 times greater abundance of domatia-bearing individuals, 1.6 times greater extrafloral nectary numbers per leaf, 1.2 times larger extrafloral nectary sizes, 2.2 times greater extrafloral nectar (EFN) volumes and a two-fold increase in total amino acid and total sugar concentrations in EFN compared with northern sites. Astrong protection-based mutualismwith ants occurred at only one southern site where herbivory was highest, suggesting that investments in attracting ants correlate with anti-herbivore benefits gained from the presence of protective ants. Our results confirm a temporally stable north-south gradient in myrmecophytic traits in this ant-plant as several of these traits were re-sampled after a 5-y interval. However, the chemical composition of EFN varied at both spatial and short-term temporal scales suggesting that only repeated measurements of rewards such as EFN can reveal the real spectrum of trait variation in an ant-plant mutualistic system.
Resumo:
1. How a symbiosis originates and is maintained are important evolutionary questions. Symbioses in myrmecophytes (plants providing nesting for ants) are believed to be maintained by protection and nutrients provided by specialist plant-ants in exchange for nesting spaces (called domatia) and nourishment offered by ant-plants. However, besides the benefits accrued from housing protective ants, the mechanisms contributing to the fitness advantages of bearing domatia have rarely been examined, especially because the domatia trait is usually constitutively expressed, and many myrmecophytes have obligate mutualisms with single ant species resulting in invariant conditions. 2. In the unspecialized ant-plant Humboldtia brunonis (Fabaceae) that offers extrafloral nectar to ants, only some plants produce domatia in the form of hollow internodes. These domatia have a self-opening slit making them more prone to interlopers and are occupied mostly by non-protective ants and other invertebrates, especially arboreal earthworms. The protection mutualism with ants is restricted in geographical extent, occurring only at a few sites in the southernmost part of this plant's range in the Western Ghats of India. 3. We examined nutrient flux from domatia residents to the plant using stable isotopes. We found that between 9% (earthworms) and 17% (protective or non-protective ants) of nitrogen of plant tissues nearest the domatium came from domatia inhabitants. Therefore, interlopers such as earthworms and non-protective ants contributed positively to the nitrogen budget of localized plant modules of this understorey tree. N-15-enriched feeding experiments with protective ants demonstrated that nutrients flowed from domatia inhabitants to nearby plant modules. Fruit set did not differ between paired hand-pollinated inflorescences on domatia and non-domatia bearing branches. This was possibly due to the nutrient flux from domatia to adjacent branches without domatia within localized modules. 4. This study has demonstrated the nutritive role of non-protective ants and non-ant invertebrates, hitherto referred to as interlopers, in an unspecialized myrmecophyte. Our study suggests that even before the establishment of a specialized ant-plant protection mutualism, nutritional benefits conferred by domatia inhabitants can explain the fitness benefits of bearing domatia, and thus the maintenance of a trait that facilitates the establishment of a specialized ant-plant symbiosis.
Resumo:
The ant-plant Humboldtia brunonis secretes extrafloral nectar (EFN) despite the lack of antiherbivore protection from most ants. EFN was richer in composition than phloem sap and honeydew from untended Hemiptera on the plant, suggesting that EFN could potentially distract ants from honeydew, since ants rarely tended Hemiptera on this plant.