850 resultados para Anoxic Events
Resumo:
We estimate tropical Atlantic upper ocean temperatures using oxygen isotope and Mg/Ca ratios in well-preserved planktonic foraminifera extracted from Albian through Santonian black shales recovered during Ocean Drilling Program Leg 207 (North Atlantic Demerara Rise). On the basis of a range of plausible assumptions regarding seawater composition at the time the data support temperatures between 33° and 42°C. In our low-resolution data set spanning ~84-100 Ma a local temperature maximum occurs in the late Turonian, and a possible minimum occurs in the mid to early late Cenomanian. The relation between single species foraminiferal d18O and Mg/Ca suggests that the ratio of magnesium to calcium in the Turonian-Coniacian ocean may have been lower than in the Albian-Cenomanian ocean, perhaps coincident with an ocean 87Sr/86Sr minimum. The carbon isotopic compositions of distinct marine algal biomarkers were measured in the same sediment samples. The d13C values of phytane, combined with foraminiferal d13C and inferred temperatures, were used to estimate atmospheric carbon dioxide concentrations through this interval. Estimates of atmospheric CO2 concentrations range between 600 and 2400 ppmv. Within the uncertainty in the various proxies, there is only a weak overall correspondence between higher (lower) tropical temperatures and more (less) atmospheric CO2. The GENESIS climate model underpredicts tropical Atlantic temperatures inferred from ODP Leg 207 foraminiferal d18O and Mg/Ca when we specify approximate CO2 concentrations estimated from the biomarker isotopes in the same samples. Possible errors in the temperature and CO2 estimates and possible deficiencies in the model are discussed. The potential for and effects of substantially higher atmospheric methane during Cretaceous anoxic events, perhaps derived from high fluxes from the oxygen minimum zone, are considered in light of recent work that shows a quadratic relation between increased methane flux and atmospheric CH4 concentrations. With 50 ppm CH4, GENESIS sea surface temperatures approximate the minimum upper ocean temperatures inferred from proxy data when CO2 concentrations specified to the model are near those inferred using the phytane d13C proxy. However, atmospheric CO2 concentrations of 3500 ppm or more are still required in the model in order to reproduce inferred maximum temperatures.
Resumo:
Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian-Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, d13Corg values lie mostly between -30 per mil and -27 per mil, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low d13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian-Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.
Resumo:
Numerous sapropels and sapropelic strata from Upper Pliocene and Pleistocene hemipelagic sediments of the Tyrrhenian Sea show that intermittent anoxia, possibly related to strongly increased biological productivity, was not restricted to the eastern Mediterranean basins and may be a basin-wide result of Late Pliocene-Pleistocene climatic variability. Even though the sapropel assemblage of the Tyrrhenian Sea clearly originates from multiple processes such as deposition under anoxic conditions or during spikes in surface water productivity and lateral transport of organic-rich suspensates, many "pelagic sapropels" have been recognized. Stratigraphic ages calculated for the organic-rich strata recovered during ODP Leg 107 indicate that the frequency of sapropel formation increased from the lowermost Pleistocene to the base of the Jaramillo magnetic event, coinciding with a period when stable isotope records of planktonic foraminifera indicate the onset of climatic cooling in the Mediterranean. A second, very pronounced peak in sapropel formation occurred in the Middle to Late Pleistocene (0.73-0.26 Ma). Formainifers studied in three high-resolution sample sets suggest that changes in surface-water temperature may have been responsible for establishing anoxic conditions, while salinity differences were not noted in the faunal assemblage. However, comparison of sapropel occurrence at Site 653 with the oxygen isotopic record of planktonic foraminifers established by Thunell et al. (1990, doi:10.2973/odp.proc.sr.107.155.1990) indicates that sapropel occurrences coincide with negative d18O excursions in planktonic foraminifers in thirteen of eighteen sapropels recognized in Hole 653A. A variant of the meltwater hypothesis accepted for sapropel formation in the Late Pleistocene eastern Mediterranean may thus be the cause of several "anoxic events" in the Tyrrhenian as well. Model calculations indicate that the amount of oxygen advection from Western Mediterranean Deep Water exerts the dominant control on the oxygen content in deep water of the Tyrrhenian Sea. Inhibition of deep-water formation in the northern Adriatic and the Balearic Basin by increased meltwater discharge and changing storm patterns during climatic amelioration may thus be responsible for sapropel formation in the Tyrrhenian Sea.
Resumo:
We report the sulfur and oxygen isotope composition of sulfate (d34SSO4 and d18OSO4, respectively) in coexisting barite and carbonate-associated sulfate (CAS), which we use to explore temporal variability in the marine sulfur cycle through the middle Cretaceous. The d34SSO4 of marine barite tracks previously reported sulfur isotope data from the tropical Pacific. The d18OSO4 of marine barite exhibits more rapid and larger isotopic excursions than the d34SSO4 of marine barite; these excursions temporally coincide with Ocean Anoxic Events (OAEs). Neither the d34SSO4 nor the d18OSO4 measured in marine barite resembles the d34SSO4 or the d18OSO4 measured in coexisting CAS. Culling our data set for elemental parameters suggestive of carbonate recrystallization (low [Sr] and high Mn/Sr) improves our record of d18OSO4 in CAS in the Cretaceous. This suggests that the CAS proxy can be impacted by carbonate recrystallization in some marine sediments. A box model is used to explore the response of the d34SSO4 and d18OSO4 to different perturbations in the marine biogeochemical sulfur cycle. We conclude that the d34SSO4 in the middle Cretaceous is likely responding to a change in the isotopic composition of pyrite being buried, coupled possibly with a change in riverine input. On the other hand, the d18OSO4 is likely responding to rapid changes in the reoxidation pathway of sulfide, which we suggest may be due to anoxic versus euxinic conditions during different OAEs.
Resumo:
Mid-Cretaceous (Barremian-Turonian) plankton preserved in deep-sea marl, organic-rich shale, and pelagic carbonate hold an important record of how the marine biosphere responded to short- and long-term changes in the ocean-climate system. Oceanic anoxic events (OAEs) were short-lived episodes of organic carbon burial that are distinguished by their widespread distribution as discrete beds of black shale and/or pronounced carbon isotopic excursions. OAE1a in the early Aptian (~120.5 Ma) and OAE2 at the Cenomanian/Turonian boundary (~93.5 Ma) were global in their distribution and associated with heightened marine productivity. OAE1b spans the Aptian/Albian boundary (~113-109 Ma) and represents a protracted interval of dysoxia with multiple discrete black shales across parts of Tethys (including Mexico), while OAE1d developed across eastern and western Tethys and in other locales during the latest Albian (~99.5 Ma). Mineralized plankton experienced accelerated rates of speciation and extinction at or near the major Cretaceous OAEs, and strontium isotopic evidence suggests a possible link to times of rapid oceanic plateau formation and/or increased rates of ridge crest volcanism. Elevated levels of trace metals in OAE1a and OAE2 strata suggest that marine productivity may have been facilitated by increased availability of dissolved iron. The association of plankton turnover and carbon isotopic excursions with each of the major OAEs, despite the variable geographic distribution of black shale accumulation, points to widespread changes in the ocean-climate system. Ocean crust production and hydrothermal activity increased in the late Aptian. Faster spreading rates [and/or increased ridge length] drove a long-term (Albian-early Turonian) rise in sea level and CO2-induced global warming. Changes in ocean circulation, water column stratification, and nutrient partitioning lead to a reorganization of plankton community structure and widespread carbonate (chalk) deposition during the Late Cretaceous. We conclude that there were important linkages between submarine volcanism, plankton evolution, and the cycling of carbon through the marine biosphere.
Resumo:
Stable isotopic and micropaleontological studies were made of selected sapropels (organic-rich sediments) deposited in the Mediterranean Sea during the last 5.0 m.y. to determine the processes responsible for their formation. Distinct isotopic and faunal changes occur across sapropels of late Pleistocene, early Pleistocene and latest Pliocene age, while smaller isotopic changes and more stable faunal assemblages are associated with the early and mid-late Pliocene sapropels. The large d18O depletions and euryhaline fauna associated with latest Pliocene-Pleistocene sapropels supports a density stratification model with a low salinity surface layer. In contrast, early Pliocene and mid-late Pliocene sapropels appear to have been formed as the result of sluggish circulation and low oxygen contents in bottom waters of the eastern Mediterranean due to the stable, warm climatic conditions of that time period.
Resumo:
The Cretaceous Equatorial Atlantic Gateway between the Central and South Atlantic basins is of interest not only for paleoceanographic and paleoclimatic studies, but also because it provided particularly favourable conditions for the accumulation and preservation of organic-rich sediments. Deposition of carbonaceous sediments along the Côte d'Ivoire-Ghana Transform Margin (Ocean Drilling Program Leg 159) was intimately linked to the plate tectonic and paleoceanographic evolution of this gateway. Notably, the formation of a marginal basement ridge on the southeastern border of the transform margin provided an efficient shelter of the landward Deep Ivorian Basin against erosive and potentially oxidizing currents. Different subsidence histories across the transform margin were responsible for the development of distinct depositional settings on the crest and on both sides of the basement ridge. Whereas the southern, oceanward flank of the basement ridge was characterized by rapid, continuous deepening since last Albian-early Cenomanian, marine sedimentation on the northern, landward flank was interrupted by a period of uplift and erosion in the late Albian, and rapid subsidence started after the early Coniacian. Organic-rich sediments occur throughout almost the entire Cretaceous section, but hydrogen-rich marine black shales were exclusively recovered from core sections above an uplift-related unconformity. These black shales formed when separation of Africa and South America was sufficient to allow permanent oceanic midwater exchange after the late Albian. Four periods of black shale accumulation are recovered, some of them are correlated with the global oceanic anoxic events: in the last Albian-earliest Cenomanian, at the Cenomanian-Turronian boundary, during the middle Coniacian-early Campanian, and in the mid-Maastrichtian. These periods were characterized by increasing carbon flux to the seafloor, induced by enhanced palaeoproductivity and intensified supply of terrestrial organic matter. Black shale depostion appears to be intimately linked to periods of rising or maximum eustatic sea level and to the expansion of the oxygen minimum zone, as indicated by foraminiferal biofacies. Intervals between black shales units, in contrast, indicate a shrinking oxygen minimum zone and enhanced detrital flux rates, probably related to lowering sea level. Upper Cretaceous detritral limestones with high porosities may provide excellent hydrocarbon reservoirs, alsthough their areal extent appears to be limited. Palaeogene porcellanites, capped by Neogene pelagic marls and clays, extend over a wider area and max provide another target for hydrocarbon exploration.
Resumo:
The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^
Resumo:
High-resolution sedimentary records of major and minor elements (Al, Ba, Ca, Sr, Ti), total organic carbon (TOC), and profiles of pore water constituents (SO42-, CH4, Ca2+, Ba2+, Mg2+, alkalinity) were obtained for two gravity cores (core 755, 501 m water depth and core 214, 1686 m water depth) from the northwestern Black Sea. The records were examined in order to gain insight into the cycling of Ba in anoxic marine sediments characterized by a shallow sulfate-methane transition (SMT) as well as the applicability of barite as a primary productivity proxy in such a setting. The Ba records are strongly overprinted by diagenetic barite (BaSO4) precipitation and remobilization; authigenic Ba enrichments were found at both sites at and slightly above the current SMT. Transport reaction modeling was applied to simulate the migration of the SMT during the changing geochemical conditions after the Holocene seawater intrusion into the Black Sea. Based on this, sediment intervals affected by diagenetic Ba redistribution were identified. Results reveal that the intense overprint of Ba and Baxs (Ba excess above detrital average) strongly limits its correlation to primary productivity. These findings have implications for other modern and ancient anoxic basins, such as sections covering the Oceanic Anoxic Events for which Ba is frequently used as a primary productivity indicator. Our study also demonstrates the limitations concerning the use of Baxs as a tracer for downward migrations of the SMT: due to high sedimentation rates at the investigated sites, diagenetic barite fronts are buried below the SMT within a relatively short period. Thus, 'relict' barite fronts would only be preserved for a few thousands of years, if at all.
Resumo:
During Ocean Drilling Program Leg 210, a greatly expanded sedimentary sequence of continuous Cretaceous black shales was recovered at Site 1276. This section corresponds to the Hatteras Formation, which has been documented widely in the North Atlantic Ocean. The cored sequence extends from the lowermost Albian, or possibly uppermost Aptian, to the Cenomanian/Turonian boundary and is characterized by numerous gravity-flow deposits and sporadic, finely laminated black shales. The sequence also includes several sedimentary intervals with high total organic carbon (TOC) contents, in several instances of probable marine origin that may record oceanic anoxic events (OAE). These layers might correspond to the Cenomanian-Turonian OAE 2; the mid-Cenomanian event; and OAE 1b, 1c, and 1d in the Albian. In addition, another interval with geochemical characteristics similar to OAE-type layers was recognized in the Albian, although it does not correspond to any of the known OAEs. This study investigates the origin of the organic matter contained within these black shale intervals using TOC and CaCO3 contents, Corg/Ntot ratios, organic carbon and nitrogen isotopes, trace metal composition, and rock-eval analyses. Most of these black shale intervals, especially OAE 2 and 1b, are characterized by low 15N values (<0) commonly observed in mid-Cretaceous black shales, which seem to reflect the presence of an altered nitrogen cycle with rates of nitrogen fixation significantly higher than in the modern ocean.
Stable carbon and oxygen isotope ratios of benthic and planktonic foraminifera of ODP Hole 171-1049C
Resumo:
Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction (Arthur et al., 1990; Erbacher et al., 1996, doi:10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2; Kuypers et al., 1999, doi:10.1038/20659; Jenkyns, 1997; Hochuli et al., 1999, doi:10.1130/0091-7613(1999)027<0657:EOHPAC>2.3.CO;2). Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (~46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.