1000 resultados para Anisotropy-magnetic susceptibility, factor F, foliation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from Sites 1057 and 1061 of Ocean Drilling Program Leg 172 on the Blake Outer Ridge exhibit nearly isotropic magnetic susceptibility. Resolving the degree of anisotropy of magnetic susceptibility proved difficult in many samples because of the generally weak magnetic susceptibility of the sediments relative to the noise level of the susceptibility meters used. Lineation varies from 1.0 to 1.013 and foliation varies from 1.0 to 1.08 in the samples that pass rejection criteria. In general the foliation is better resolved than the lineation, particularly at Site 1061, where the foliation exhibits long-term trends that mimic the mean susceptibility. The changes in the foliation at this site are likely the result of changes in the magnetic mineralogy of the sediment. The poorly developed or absent magnetic fabric in the sediments overall can be attributed to high carbonate concentrations and to a circulation regime that was diffuse or with currents too weak to effectively align magnetic particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As reported by Shipboard Scientific Party (2001b, doi:10.2973/odp.proc.ir.191.104.2001) in the Site 1179 chapter of the Initial Reports volume, Leg 191 Site 1179 is located on abyssal seafloor northwest of Shatsky Rise, ~1650 km east of Japan. This part of the Pacific plate was formed during the Early Cretaceous, as shown by northeast-trending M-series magnetic lineations that become younger toward the northwest (Larson and Chase, 1972, doi:10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2; Sager et al., 1988, doi:10.1029/JB093iB10p11753; Nakanishi et al., 1989, doi:10.1029/1999JB900002). The site is situated on magnetic Anomaly M8 (Nakanishi et al., 1999, doi:10.1029/1999JB900002), corresponding to an age of ~129 Ma and the Hauterivian stage of the Early Cretaceous (Gradstein et al., 1994, doi:10.1029/94JB01889; 1995). The sediments recovered at Site 1179 are split into four lithostratigraphic units based on composition and color (Shipboard Scientific Party, 2001b, doi:10.2973/odp.proc.ir.191.104.2001). Unit I (0-221.52 meters below seafloor [mbsf]) is a dominantly olive-gray clay- and radiolarian-bearing diatom ooze. Unit II (221.52-246.0 mbsf) is a yellowish brown to light brown clay-rich and diatom-bearing radiolarian ooze. Unit III (246.0-283.53 mbsf) is composed of brown pelagic clay. Unit IV (283.53-377.15 mbsf) is composed of chert and some porcellanite; any softer sediments present were washed out of the core barrel by the fluid circulating during the coring process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 134, the influence of ridge collision and subduction on the structural evolution of island arcs was investigated by drilling at a series of sites in the collision zone between the d'Entrecasteaux Zone (DEZ) and the central New Hebrides Island Arc. The DEZ is an arcuate Eocene-Oligocene submarine volcanic chain that extends from the northern New Caledonia Ridge to the New Hebrides Trench. High magnetic susceptibilities and intensities of magnetic remanence were measured in volcanic silts, sands, siltstones, and sandstones from collision zone sites. This chapter presents the preliminary results of studies of magnetic mineralogy, magnetic properties, and magnetic fabric of sediments and rocks from Sites 827 through 830 in the collision zone. The dominant carrier of remanence in the highly magnetic sediments and sedimentary rocks in the DEZ is low-titanium titanomagnetite of variable particle size. Changes in rock magnetic properties reflect variations in the abundance and size of titanomagnetite particles, which result from differences in volcanogenic contribution and the presence or absence of graded beds. Although the anisotropy of magnetic susceptibility results are difficult to interpret in terms of regional stresses because the cores were azimuthally unoriented, the shapes of the susceptibility ellipsoids provide information about deformation style. The magnetic fabric of most samples is oblate, dominated by foliation, as is the structural fabric. The variability of degree of anisotropy (P) and a factor that measures the shape of the ellipsoid (q) reflect the patchy nature of deformation, at a micrometer scale, that is elucidated by scanning electron microscope analysis. The nature of this patchiness implies that deformation in the shear zones is accomplished primarily by motion along bedding planes, whereas the material within the beds themselves remains relatively undeformed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 185, we studied progressive changes of microfabrics of unconsolidated pelagic and hemipelagic sediments in Holes 1149A and 1149B in the northwest Pacific at 5818 m water depth. We paid particular attention to the early consolidation and diagenetic processes without tectonic deformation before the Pacific plate subduction at the Izu-Bonin Trench. Shape, size, and arrangement of pores were analyzed by scanning electron microscope (SEM) and were compared to anisotropy of magnetic susceptibility (AMS) data. The microfabric in Unit I is nondirectional fabric and is characterized by large peds of ~10-100 µm diameter, which are made up of clay platelets (mainly illite) and siliceous biogenic fragments. They are ovoid in shape and are mechanically packed by benthic animals. Porosity decreases from 0 to 60 meters below seafloor (mbsf) in Unit I (from 60% to 50%) in association with macropore size decreases. The microfabric of coarser grain particles other than clay in Unit II is characterized by horizontal preferred orientation because of depositional processes in Subunit IIA and burial compaction in Subunit IIB. On the other hand, small peds, which are probably made of fragments of fecal pellets and are composed of smectite and illite (3-30 µm diameter), are characterized by random orientation of clay platelets. The clay platelets in the small peds in Subunit IIA are in low-angle edge-to-face (EF) or face-to-face (FF) contact. These peds are electrostatically connected by long-chained clay platelets, which are interconnected by high-angle EF contact. Breaking of these long chains by overburden pressure diminishes the macropores, and the clay platelets in the peds become FF in contact, resulting in decreases in the volume of the micropores between clay platelets. Thus, porosity in Subunits IIA and IIB decreases remarkably downward. The AMS indicates random fabric and horizontal preferred orientation fabric in Units I and II, respectively. This result corresponds to that of SEM microfabric observations.In Subunit IIB, pressure solutions around radiolarian tests and clinoptilolite veins with normal displacement sense are seen distinctively below ~170 mbsf, probably in correspondence to the transition zone from opal-A to opal-CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments recovered from a drift deposit located on the Pacific side of the Antarctic Peninsula (ODP Leg 178, Site 1101) give a physical record of a bottom current, sourced from the Weddell Sea Deep Water, for the past 3 Ma. Sediment grain size and magnetic fabric analyses indicate a contourite depositional environment and little change in the average intensity of this current. Terrigenous fluxes decreased around the time of the onset of Northern Hemisphere Glaciation, which we interpret as a freezing of the base of the Antarctic Peninsula Ice Cap. Terrigenous fluxes have increased since 1.7 Ma implying a possible return of the Antarctic Peninsula Ice Cap to a more wet-based ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility (AMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation.