986 resultados para Anisotropic magnetoresistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropic damage distribution and evolution have a profound effect on borehole stress concentrations. Damage evolution is an irreversible process that is not adequately described within classical equilibrium thermodynamics. Therefore, we propose a constitutive model, based on non-equilibrium thermodynamics, that accounts for anisotropic damage distribution, anisotropic damage threshold and anisotropic damage evolution. We implemented this constitutive model numerically, using the finite element method, to calculate stress–strain curves and borehole stresses. The resulting stress–strain curves are distinctively different from linear elastic-brittle and linear elastic-ideal plastic constitutive models and realistically model experimental responses of brittle rocks. We show that the onset of damage evolution leads to an inhomogeneous redistribution of material properties and stresses along the borehole wall. The classical linear elastic-brittle approach to borehole stability analysis systematically overestimates the stress concentrations on the borehole wall, because dissipative strain-softening is underestimated. The proposed damage mechanics approach explicitly models dissipative behaviour and leads to non-conservative mud window estimations. Furthermore, anisotropic rocks with preferential planes of failure, like shales, can be addressed with our model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a rigorous validation of the analyticalAmadei solution for the stress concentration around arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients β11 and β55 are not equal. It is shown from theoretical considerations and published experimental data that the β11 and β55 are not equal for realistic rocks. Second, we develop a 3D finite-element elastic model within a hybrid analyticalnumerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic and transverse isotropic symmetries. It is concluded that the analytical Amadei solution is valid with no restrictions on the borehole orientation or elastic anisotropy symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study, in two dimensions, the effect of misfit anisotropy on microstructural evolution during precipitation of an ordered beta phase from a disordered alpha matrix; these phases have, respectively, 2- and 6-fold rotation symmetries. Thus, precipitation produces three orientational variants of beta phase particles, and they have an anisotropic (and crystallographically equivalent) misfit strain with the matrix. The anisotropy in misfit is characterized using a parameter t = epsilon(yy)/epsilon(xx), where epsilon(xx) and epsilon(yy) are the principal components of the misfit strain tensor. Our phase field, simulations show that the morphology of beta phase particles is significantly influenced by 1, the level of misfit anisotropy. Particles are circular in systems with dilatational misfit (t = 1), elongated along the direction of lower principal misfit when 0 < t < 1 and elongated along the invariant direction when - 1 <= t <= 0. In the special case of a pure shear misfit strain (t = - 1), the microstructure exhibits star, wedge and checkerboard patterns; these microstructural features are in agreement with those in Ti-Al-Nb alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured the thermopower (S) of hole-doped LaMnO3 systems in order to see its dependence on the Mn4+ content as well as to investigate other crucial factors that determine S. We have carried out hole doping (creation of Mn4+ by two distinct means, namely, by the substitution of La by divalent cations such as Ca and Sr and by self-doping without aliovalent substitution). The thermopower is sensitive not only to the hole concentration but also to the process employed for hole doping, which we explain as arising from the differences in the nature of the hole-doped states. We also point out a general trend in the dependence of S on hole concentration at high temperatures (T> T-c), similar to that found in the normal-state thermopower of the cuprates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief addendum, we clarify a point which we left unaddressed in a previous publication [Phys. Rev. D 78, 066006 (2008)]. In particular, we show that a specific vacuum configuration constructed in one of our models satisfies the condition D=0. In the previous publication, we only showed F=0. Both D=0 and F=0 are necessary to ensure that supersymmetry survives to the weak scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To study the anisotropic mechanical properties of the thoracic aorta in porcine. Methods: Twenty-one porcine thoracic aortas were collected and categorized into three groups. The aortas were then cut through in their axial directions and expanded into two-dimensional planes. Then, by setting the length direction of the planar aortas (i.e., axial directions of the aortas) as 0°, each planar aorta was counterclockwisely cut into 8 samples with orientation of 30°, 45°, 60°, 90°, 120°, 135°, 150° and 180°, respectively. Finally, the uniaxial tensile tests were applied on three groups of samples at the loading rates of 1, 5 and 10 mm/min, respectively, to obtain the elastic modulus and ultimate stress of the aorta in different directions and at different loading rates. Results: The stress-strain curves exhibited different viscoelastic behaviors. With the increase of sample orientations, the elastic modulus gradually increased from 30°, reached the maximum value at 90°, and then gradually decreased till 180°. The variation trend of ultimate stress was similar to that of elastic modulus. Moreover, different loading rates showed a significant influence on the results of elastic modulus and ultimate stress, but a weak influence on the anisotropic degree. Conclusions: The porcine thoracic aorta is highly anisotropic. This research finding provides parameter references for assignment of material properties in finite element modeling, and is significant for understanding biomechanical properties of the arteries.