947 resultados para Animals de laboratori
Resumo:
Oleoyl-estrone (OE) is an adipose-derived signal that decreases energy intake and body lipid, maintaining energy expenditure and glycemic homeostasis. Glucocorticoids protect body lipid and the metabolic status quo. We studied the combined effects of OE and corticosterone in adrenalectomized female rats: daily OE gavages (0 or 10 nmol/g) and slow-release corticosterone pellets at four doses (0, 0.5, 1.7, and 4.8 mg/d). Intact and sham-operated controls were also included. After 8 d, body composition and plasma metabolites and hormones were measured. OE induced a massive lipid mobilization (in parallel with decreased food intake and maintained energy expenditure). Corticosterone increased fat deposition and inhibited the OE-elicited mobilization of body energy, even at the lowest dose. OE enhanced the corticosterone-induced rise in plasma triacylglycerols, and corticosterone blocked the OE-induced decrease in leptin. High corticosterone and OE increased insulin resistance beyond the effects of corticosterone alone. The presence of corticosterone dramatically affected OE effects, reversing its decrease of body energy (lipid) content, with little or no change on food intake or energy expenditure. The maintenance of glycemia and increasing insulin in parallel to the dose of corticosterone indicate a decrease in insulin sensitivity, which is enhanced by OE. The reversal of OE effects on lipid handling, insulin resistance, can be the consequence of a corticosterone-induced OE resistance. Nevertheless, OE effects on cholesterol were largely unaffected. In conclusion, corticosterone administration effectively blocked OE effects on body lipid and energy balance as well as insulin sensitivity and glycemia.
Resumo:
1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage.
Resumo:
Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.
Resumo:
Zucker lean and obese rats were injected under pentobarbital anesthesia with 125I-labeled insulin; at timed intervals from 30 to 120 sec, blood samples were extracted and used for the estimation of insulin levels by RIA. A group of rats from each series was maintained under a constant infusion of noradrenaline. For each insulin determination, a duplicate blood sample containing the same amount of insulin as that used in the RIA, but without the radioactive label, was used as a blank for insulin measurement. The radioactivity in these tubes was then used for the measurement of insulin label per ml blood. From plasma label decay curves and insulin concentrations, the insulin pool size, half-life, and rate of degradation were calculated. Obese rats had higher insulin levels (2.43 nM) and showed less effect of noradrenaline than their lean counterparts, in which insulin distribution volume shrank with noradrenaline treatment. The half-life of plasma insulin was similar in all groups (range, 226-314 sec). Pool size and overall degradation rates were higher in obese (198 femtokatals) than in lean rats (28 femtokatals). It is postulated that obese rats synthesize and cleave much more insulin than lean controls despite their higher circulating levels of insulin.
Resumo:
Conscious female adult lean and obese Zucker rats were injected through the jugular vein with radioactive iodine-labeled murine leptin; in the ensuing 8 min, four blood samples were sequentially extracted from the carotid artery. The samples were used in a modified RIA for leptin, in which paired tubes received the same amount of either labeled or unlabeled leptin, thus allowing us to estimate both leptin levels and specific radioactivity. The data were used to determine the decay curve parameters from which the half-life of leptin (5.46 ± 0.23 min for lean rats and 6.99 ± 0.75 min for obese rats) as well as the size of its circulating pool (32 pmol/kg for lean rats and 267 pmol/kg for obese rats) and the overall degradation rate (96 fkat/kg for lean rats and 645 fkat/kg for obese rats) were estimated. These values are consistent with the hormonal role of leptin and the need for speedy changes in its levels in response to metabolic challenge.
Resumo:
White adipose tissue (WAT) is a disperse organ acting as energy storage depot and endocrine/paracrine controlling factor in the management of energy availability and inflammation. WAT sites response under energy-related stress is not uniform. In the present study we have analyzed how different WAT sites respond to limited food restriction as a way to better understand the role of WAT in the pathogenesis of the metabolic syndrome.
Resumo:
Background: Dehydroepiandrosterone (DHEA) released by adrenal glands may be converted to androgens and estrogens mainly in the gonadal, adipose, mammary, hepatic and nervous tissue. DHEA is also a key neurosteroid and has antiglucocorticoid activity. DHEA has been used for the treatment of a number of diseases, including obesity; its pharmacological effects depend on large oral doses, which effect rapidly wanes in part because of its short half-life in plasma. Since steroid hormone esters circulate for longer periods, we have studied here whether the administration of DHEA oleoyl ester may extend its pharmacologic availability by keeping high circulating levels. Results: Tritium-labelled oleoyl-DHEA was given to Wistar male and female rats by gastric tube. The kinetics of appearance of the label in plasma was unrelated to sex; the pattern being largely coincident with the levels of DHEA-sulfate only in females, and after 2 h undistinguishable from the results obtained using labelled DHEA gavages; in the short term, practically no lipophilic DHEA label was found in plasma. After 24 h only a small fraction of the label remained in the rat organs, with a different sex-related distribution pattern coincident for oleoyl- and free- DHEA gavages. The rapid conversion of oleoyl-DHEA into circulating DHEA-sulfate was investigated using stomach, liver and intestine homogenates; which hydrolysed oleoyl-DHEA optimally near pH 8. Duodenum and ileum contained the highest esterase activities. Pure hog pancreas cholesterol-esterase broke down oleoyl-DHEA at rates similar to those of oleoyl-cholesterol. The intestinal and liver esterases were differently activated by taurocholate and showed different pH-activity patterns than cholesterol esterase, suggesting that oleoyl-DHEA can be hydrolysed by a number of esterases in the lumen (e.g. cholesterol-esterase), in the intestinal wall and the liver. Conclusion: The esterase activities found may condition the pharmacological availability (and depot effect) of orally administered steroid hormone fatty acid esters such as oleoyl-DHEA. The oral administration of oleoyl-DHEA in order to extend DHEA plasma availability has not been proved effective, since the ester is rapidly hydrolysed, probably in the intestine itself, and mainly converted to DHEA-sulfate at least in females.
Resumo:
Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.
Resumo:
The activities of aspartate and alanine transaminase, serine dehydratase, arginase, glutamate dehydrogenase, adenylate deaminase and glutamine synthetase were determined in the stomach and small intestine of developing rats. Despite the common embryonic origin of the intestine and stomach, their enzymes showed quite different activity levels and patterns of development, depending on their roles. Most enzyme activities were low during late intrauterine life and after birth, attaining adult levels with the change of diet at weaning. No arginase activity was found in the stomach and no changes were detected in adenylate deaminase in the stomach or intestine throughout the period studied. Alanine transaminase, serine dehydratase and, to some extent, glutamine synthetase levels, significantly higher in late intrauterine life, decreased after birth, suggesting that the foetal stomach has a transient ability to handle amino acids.
Resumo:
1. The effects of "cafeteria feeding" on primiparous Wistar rats during lactation have been studied by measuring circulating levels of glucose, amino acids, lactate, urea and ammonia as well as glycogen levels in liver and muscle. 2. No significant changes in glucose levels were observed despite alterations in blood glucose compartmentation. 3. Compared with controls, the dams given the cafeteria diet had higher liver glycogen stores which were more easily mobilized at the peak of lactation. 4. Rats given the cafeteria diet showed a lower amino acid utilization than controls and adequately maintained circulating levels, as determined by the lower circulating levels of ammonia and urea. 5. No significant differences in body-weight were observed in the period studied despite increasing dam weight after weaning in the cafeteria-fed group. 6. The size of pups of cafeteria-fed dams was greater than that of controls, and the differences were marked after weaning, when the metabolic machinery of the cafeteria pup maintained high protein accretion and body build-up using fat as the main energy substrate characteristic of the preweaning stage. The controls, however, changed to greater utilization of amino acids as an energy substrate and adapted to high-protein (lowbiological-quality) diets with a significantly different pattern of circulating nitrogen distribution.
Resumo:
The biological consequences of constitutive fibroblast growth factor-4 (fgf4) expression have been analysed during anterior CNS development of mouse chimeric embryos. Severe mutant embryos exhibit exencephaly, absence of eye development and anomalous differentiation of neuropithelium. These embryos also show ectopic limb buds resembling the early phases of limb development. Because our results show that anterior CNS in those chimeric embrios does not express shh ectopically, we suggest that malformations may be due to interference between the ectopic expression of fgf4 in the cephalic area and the receptors for the members of the FGF family that regulate brain and eye development, namely fgf8. If this is correct, the results indirectly suport the crucial role of fgf8 in patterning the anterior CNS.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.